

BENEFICIO ECOLOGICO DEL CAFE

Cenicafe

Centro Nacional de Investigaciones de Café "Pedra Unbe Mejla"

BENEFICIO BEL CAFÉ

Gonzalo Roa M.
Carlos E. Oliveros T.
José Álvarez G.
César A. Ramírez G.
Juan R. Sanz U.
María T. Dávila A.
Jairo R. Álvarez H.
Diego A. Zambrano F.
Gloria I. Puerta Q.
Nelson Rodríguez V.

6E6Ea4Ns

R51 Roa M., G.

BENEFICIO ECOLOGICO DEL CAFÉ. Por Gonzalo Roa M.; Carlos E. Oliveros T.; José Álvarez G.; César A. Ramírez G.; Juan R. Sanz U.; María T. Dávila A.; Jairo R. Álvarez H.; Diego A. Zambrano F.; Gloria I. Puerta Q.; Nelson Rodríguez V.

Chinchiná (Colombia), CENICAFÉ, 1999 300p.

ISBN: 958-96554-3-2

Roa M., G. II. Coautores. III. Título.

Beneficio del Café.
 Copyright Cenicafé 1999.

Los trabajos suscritos por el personal técnico del Centro Nacional de Investigaciones de Café son parte de las investigaciones realizadas por la Federación Nacional de Cafeteros de Colombia. Sin embargo, tanto en este caso como en el de personas no pertenecientes a este Centro, las ideas emitidas por los autores son de su exclusiva responsabilidad y no expresan necesariamente las opiniones de la Entidad.

FEDERACIÓN NACIONAL DE CAFETEROS DE COLOMBIA

COMITÉ NACIONAL DE CAFETEROS

Ministro de Hacienda y Crédito Público Ministro de Agricultura y Desarrollo Rural Ministro de Comercio Exterior Director del Departamento de Planeación Nacional

Miembros elegidos para el período 1999-2001

PRINCIPALES

Luis Ignacio Múnera Cambas Mario Gómez Estrada Alfonso Jaramillo Salazar Rodrigo Múnera Zuloaga Julio Ernesto Marulanda Buitrago Diego Arango Mora Floresmiro Azuero Ramírez Carlos Alberto Martínez Martínez

SUPLENTES

Jorge Alberto Uribe Echavarría Jorge Cala Robayo Ramón Campo González Rodolfo Campo Soto Édgar Dávila Múñoz + Alfredo Yañez Carvajal Luis Ardila Casamitjana Ernesto Sayer Martínez

Gerente General

JORGE CÁRDENAS GUTIÉRREZ

Subgerente General HERNÁN URIBE ARANGO

Gerente Técnico

ANTONIO HERRÓN ORTIZ

Director Programa de Investigación Científica Director Centro Nacional de Investigaciones de Café GABRIEL CADENA GÓMEZ

UNA PUBLICACIÓN DE Cenicafé

Coordinación editorial

y corrección de textos:

Héctor Fabio Ospina Ospina - Ing. Agr. M.Sc.

Diseño y Diagramación:

Gonzalo Gallego González.

Fotografías:

Gonzalo Hoyos Salazar.

Disciplina de Ingeniería Agrícola de Cenicafé

1a. Edición, Noviembre de 1999 3.000 ejemplares

TABLA DE CONTENIDO

		Pág	ina
ción			1
Prólogo			5
RALIE	DADES		7
			11
PROC	EDIMIENT	OS COMPLEMENTARIOS PARA REALIZAR	
			12
CONS	ECUENCIA	AS DE LA CONTAMINACIÓN DE LAS AGUAS	
CONS	UMO DE A	GUA Y TANQUES DE ALMACENAMIENTO	13
DESA	RROLLAD	O POR CENICAFÉ	14
LIDAI	DEL CAI	7É	15
ASPE	CTOS GEN	ERALES	17
2.1.1.	La calidad	de las variedades de café cultivadas en Colombia	18
2.1.2.	El benefici	io húmedo de café y su influencia en la calidad	21
	2.1.2.1.	La cosecha	23
	2.1.2.2.	El despulpado	23
	2.1.2.3.	La remoción del mucílago	24
	2.1.2.4.	El lavado	25
	2.1.2.6.	El almacenamiento del café pergamino	26
2.1.3.	El benefici	o por vía seca y su influencia	
	en la calida	ad del café colombiano	27
2.1.4.	Principales	s defectos en la calidad del café	28
	2.1.4.1.	La broca del café	28
	2.1.4.2.	El sabor fenólico	28
			28
EFEC.	TO DEL DE	SMUCILAGINADO MECÁNICO EN	
LA CA	LIDAD FÍS	SICA Y ORGANOLÉPTICA DEL CAFÉ	29
2.2.1.	Eliminació	n del mucílago	29
	RALID DEFIN PROC EL BE CONS POR E CONS EVALU DESA LIDAI ASPEC 2.1.1. 2.1.2.	RALIDADES DEFINICIÓN PROCEDIMIENT EL BENEFICIO E CONSECUENCIA POR EL BENEFIC CONSUMO DE A EVALUACIÓN PA DESARROLLAD LIDAD DEL CAI ASPECTOS GENT 2.1.1. La calidad 2.1.2. El benefici 2.1.2.1. 2.1.2.2. 2.1.2.3. 2.1.2.4. 2.1.2.5. 2.1.2.6. 2.1.3. El benefici en la calida 2.1.4. Principales 2.1.4.1. 2.1.4.2. 2.1.4.3. EFECTO DEL DE LA CALIDAD FÍS 2.2.1. Eliminació 2.2.2. Calidad fís	DEFINICIÓN PROCEDIMIENTOS COMPLEMENTARIOS PARA REALIZAR EL BENEFICIO ECOLÓGICO DEL CAFÉ CONSECUENCIAS DE LA CONTAMINACIÓN DE LAS AGUAS POR EL BENEFICIO DEL CAFÉ CONSUMO DE AGUA Y TANQUES DE ALMACENAMIENTO EVALUACIÓN PARCIAL DEL BENEFICIO ECOLÓGICO DESARROLLADO POR CENICAFÉ LIDAD DEL CAFÉ ASPECTOS GENERALES 2.1.1. La calidad de las variedades de café cultivadas en Colombia 2.1.2. El beneficio húmedo de café y su influencia en la calidad 2.1.2.1. La cosecha 2.1.2.2. El despulpado 2.1.2.3. La remoción del mucílago 2.1.2.4. El lavado 2.1.2.5. El secado 2.1.2.6. El almacenamiento del café pergamino 2.1.3. El beneficio por vía seca y su influencia en la calidad del café colombiano 2.1.4. Principales defectos en la calidad del café 2.1.4.1. La broca del café 2.1.4.2. El sabor fenólico

2.3.	EFECTO DEL ENFRIAMIENTO MECÁNICO EN	
2.5.	LA CALIDAD DEL CAFÉ ALMACENADO A GRANEL	35
	2.3.1. Contenido de humedad de los granos	
	2.3.2. Decoloración de los granos	.38
	2.3.3. Presencia de microorganismos	.40
	2.3.4. Calidad de la bebida	
	2.3.5. Conclusiones	
2.4	EFECTO DEL SECADO Y DEL ALMACENAMIENTO EN LA	
	CALIDAD DE LA SEMILLA DE CAFÉ (Var. COLOMBIA)	.42
	2.4.1. Efecto del secado en la viabilidad de la semilla de café	.43
	2.4.2. Efecto del almacenamiento en la viabilidad de la semilla de café	
2.5.	EFECTO DEL DESMUCILAGINADO MECÁNICO	
	EN LA CALIDAD DE LA SEMILLA DE CAFÉ	.45
2.6.	RECOMENDACIONES PARA LA CONSERVACIÓN	
2.0.	DE LA CALIDAD DEL CAFÉ Y DEL MEDIO AMBIENTE	.49
3. BENE	FICIO ECOLÓGICO DEL CAFÉ	.51
3.1.	MANEJO DEL CAFÉ EN CEREZA	.53
	3.1.1. Transporte del café cereza del campo al beneficiadero	.54
	3.1.1.1. Transporte del café cereza por cafeductos	
	3.1.1.2. Transporte del café cereza por cable aéreo de gravedad.	
	3.1.1.3. Transporte del café cereza por cable aéreo motorizado	
	3.1.2. Transporte de café cereza por gravedad,	
	dentro del beneficiadero	.56
	3.1.3. Tolva seca para la recepción del café cereza	
3.2.	DESPULPADO DEL CAFÉ	.60
3.3.	DESPULPADORA DE CAFÉ ACCIONADA A PEDAL	.63
3.4.	DISMINUCIÓN EN LAS PÉRDIDAS POR DESPULPADO	. 64
3.5.		
	DE LOS MÓDULOS BECOLSUB	.65
3.6.		
3.7.		.71
3.8.		.71
3.9.	LAVADO Y TRANSPORTE DE CAFÉ	
	CON BOMBA SUMERGIBLE	.73
3.10.	. DESMUCILAGINADO MECÁNICO, LAVADO	
	Y LIMPIADO DEL CAFÉ. EQUIPO DESLIM	
	3.10.1. Eliminación del mucílago	
	3.10.2. Principios del desmucilaginado mecánico del café	.79
	3.10.3. Desarrollo de equipos para el desmucilaginado	
	mecánico del café en Cenicafé	
	3.10.4.La tecnología DESLIM	
	3.10.5. Componentes de los equipos DESLIM	
	3.10.5.1. Carcaza	
	3.10.5.2. Rotor	.92
	3.10.6. Características de los desmucilaginadores	S- 14
	de fluio ascendente DESLIM	93

3.10.6.1. Modelo DESLIM 100	
3.10.6.2. Modelo DESLIM 300	
3.10.6.3. Modelo DESLIM 600	
3.10.6.4. Modelo DESLIM 1000	
3.10.6.5. Modelo DESLIM 3000	
3.10.7. Desempeño de la tecnología DESLIM	98
3.11. LAVADO Y CLASIFICADO DEL CAFÉ	
EN EL HIDROCICLÓN	
3.11.1. Diseño de un hidrociclón	
3.11.2. Construcción	103
3.11.3. Instalación y funcionamiento	
3.11.4. Evaluación del hidrociclón	
3.11.5. Ventajas de la utilización del hidrociclón	105
3.11.6. Desventajas de la utilización del hidrociclón	106
3.12. TRANSPORTE NEUMÁTICO DE CAFÉ PERGAMINO	
Y PULPA FRESCA DE CAFÉ	106
3.13. TRANSPORTE Y MEZCLA DE LA PULPA	
CON TORNILLO SINFÍN	108
3.13.1. Dimensiones principales	109
3.13.2. Selección del diámetro exterior	
3.13.3. Cálculo del diámetro del eje y potencia del tornillo sinfín	
3.13.4. Construcción del tornillo sinfín	111
3.14. BENEFICIADERO ECOLÓGICO CON MANEJO	
DE SUBPRODUCTOS - MÓDULO "BECOLSUB"	113
3.15. MÓDULO BECOLSUB MÓVIL	
3.16. SELECCIÓN DE UN MÓDULO BECOLSUB	118
3.17. RETENCIÓNENLA PULPA DECAFÉ, DELEFLUENTE	
LÍQUIDOSÓLIDORESULTANTEDELOS MÓDULOS BECOLSUB	120
3.18. EVALUACIONES DE CAMPO DEL MÓDULO	
BECOLSUB 600 MÓVIL	122
3.18.1. Caracterización de los diferentes tipos de café obtenidos	
3.18.2. Rendimientos y desempeños	
3.18.3. Control de la contaminación con el módulo	
BECOLSUB 600 MÓVIL	125
3.18.4. Control de la contaminación con el módulo	
BECOLSUB 1000 MÓVIL	127
3.19. CENTRAL DE BENEFICIO ECOLÓGICO	
DE ANSERMA, CALDAS (CBEA)	129
3.19.1. Componentes de la Central de Beneficio de Anserma, Caldas	131
3.19.2. Manejo de la pulpa, del mucílago y de la lombriz	
3.19.3. Evaluación de la Central	
3.19.3.1. Uso del método CERPER en la CBEA	
3.19.3.2. Calidad del café cereza y del café pergamino	
3.19.3.3. Calidad del café pergamino obtenido	
por desmucilaginado mecánico	135
3.19.3.4. Secado de café en los secadores CENICAFÉ-IFC,	100
Intermitentes de Flujos Concurrentes	136
3.19.3.5. Lombricompuesto	
J. 17. J.J. Lomoneompacsto	1 00

			3.19.3.6.	Consumo de agua	139
			3.19.3.7.	Retención de la contaminación	139
			3.19.3.8.	Consumo de energía eléctrica	139
			3.19.3.9.	Mano de obra	139
				. Objetivos planteados en la propuesta del proyecto	
				de la CBEA (1992-1993)	140
			3.19.3.11	Central de Anserma como generadora	
				de tecnología de beneficio	141
	3.20	CURS	OINTERN	ACIONAL SOBRE	
		EL BE	NEFICIO I	ECOLÓGICO DEL CAFÉ	143
	3.21			ACIÓN DEL MÓDULO BECOLSUB	
4. 5	SECA	DO DE	L CAFÉ		145
				2	
	4.1.			E HUMEDAD DEL CAFÉ	
	4.2.			OR DE HUMEDAD CENICAFÉ MH-2	148
	4.3.			DE LOS MEDIDORES	21207
				DE HUMEDAD	
	4.4.			RES Y MEDIDORES INDIRECTOS DE HUMEDAI	
	4.5.			UMEDAD DENTRO DEL GRANO DE CAFÉ	
	4.6.			AR	
				r Solar Rotatorio	
		4.6.2.	El Secado	r Solar Parabólico	156
	4.7.	RAST	RILLOS RI	EVOLVEDORES DE CAFÉ	158
	4.8.			NICO DEL CAFÉ	
				aire	
				ire a través del café	
				res	
				res de aire caliente. Intercambiadores de calor	
		4.8.5.		ecánico de capas estáticas del café	
			4.8.5.1.	Secado en una sola dirección del aire	
			4.8.5.2.	Secado con inversión de la dirección del flujo de ai	
			4.8.5.3.	Presecado del café en capas estáticas	
			4.8.5.4.	Secado mecánico del café en carros convencionales	
			0.00	para secado al sol	
			4.8.5.5.	Dimensionamiento de los secadores de capa fija	
		20.40.5	4.8.5.6.	Selección del ventilador	
		4.8.6.		necánico de café, para el aprovechamiento de	
				calorífica no utilizada en las estufas campesinas	
	-0.00			ntermitente de Flujos Concurrentes, (IFC)	
	4.9.			ATEMÁTICA DEL SECADO	
		4.9.1.		es físicas	
			4.9.1.1.	Contenido de humedad de equilibrio	
			4.9.1.2.	Calor latente de vaporización	
			4.9.1.3.	Secado de capa delgada. Difusión de humedad	
			4.9.1.4.	Área superficial	
			4915	Calor específico	184

	4.9.1.6	. Densidad aparente	185
	4.9.2. Simula	ción de procesos comerciales	185
	4.9.2.1	. Enfriamiento en silos	185
	4.9.2.2	. Secado en capas estáticas	186
	4.9.2.3	. Secado en Secador Intermitente	
		de Flujos Concurrentes	187
		000 = 1 0 M	
5. RENI	DIMIENTO DE	L CAFÉ CEREZA A CAFÉ PERGAMINO SECO) 189
5.1.		IÓN	
5.2.		IZACIÓN DE CAFÉ EN CEREZA	
5.3.	COMERCIAL	IZACIÓN DE CAFÉ PERGAMINO LAVADO	192
5.4.		CIÓN DE LAS PÉRDIDAS DE PESO	
	POR LA PERM	MANENCIA DEL CAFÉ HÚMEDO	194
	5.4.1. Revisió	on de literatura	194
	5.4.2. Ensayo	s experimentales sobre pérdida de peso	195
5.5.		EL RENDIMIENTO CEREZA/PERGAMINO	
	5.5.1. Método	CERPER	196
	5.5.1.1		
	5.5.1.2		
	5.5.1.3		
		de Beneficio Ecológico de Anserma	199
6. LOM	BRICULTURA	CON SUBPRODUCTOS DEL CAFÉ	201
6.1.	INFRAESTRU	CTURA	203
	6.1.1. Área no	ecesaria	203
		o lechos	
	6.1.3. Pisos		204
	6.1.4. Techos		
	6.1.5. Cerram	iento	
	6.1.6. Siembra	a de la lombriz	204
6.2.		SIEMBRA	
6.3.	MANEJO DEL	LOMBRICULTIVO	205
	6.3.1. Sustrate	alimenticio	205
	6.3.2. Almace	enamiento temporal del sustrato	206
	6.3.3. Sistema	de alimentación	206
	6.3.4. Frecuer	ncia y cantidad de alimento	206
6.4.	RECOLECCIÓ	N DE LOS PRODUCTOS	207
	6.4.1. Increme	ento de lombrices. Secado solar	208
	6.4.2. Rendim	niento en la producción de lombricompuesto	209
7. RENT	ABILIDAD DE	L BENEFICIO ECOLÓGICO	211
7.1.	BENEFICIOS	ECONÓMICOS	
		DLOGÍA NO CONTAMINANTE	213
7.2.		ADES SOBRE LAS EVALUACIONES	
		S DE INVERSIONES	214

BENEFICIO ECOLÓGICO DEL CAFÉ

7.3.	EVALUACION E	CONOMICA PRELIMINAR	
	DEL PROGRAM	A DE BENEFICIO ECOLÓGICO DEL CAFÉ	217
7.4.	EVALUACIÓN E	CONÓMICA MEDIANTE SOFTWARE	
		O EN CENICAFÉ. Programa "ANEFSUB"	218
		en el análisis económico de la inversión	
		ecisorio	
		dinero en el tiempo	
		ente neto. Relación beneficio/costo	
		n del programa ANEFSUB	
		*	
8. TRAT	AMIENTO ANAE	RÓBICO DE AGUAS RESIDUALES	235
8.1.	SISTEMA MODU	LAR DE TRATAMIENTO ANAERÓBICO DE	
		ALES DE BENEFICIO DEL CAFÉ - SMTA	
8.2.	PRODUCCIÓN D	ELODO METANOGÉNICO PARA EL TRATAMI	ENTO
	DE AGUAS RES	DUALES DEL PROCESO DE BENEFICIO	
	HÚMEDO DEL C	AFÉ POR BIODIGESTIÓN ANAERÓBICA	242
	8.2.1. Maduració	on del lodo	242
	8.2.2. Arranque		242
		ī-i	
o RIRI I	OGRAFÍA		247
9. DIDL	OGRAFIA		24/
	APÉNDICE - A		265
	APÉNDICE - B		266
	APÉNDICE - C		272

ÍNDICE DE FIGURAS

Pág	gina
Figura 1. Efecto del desmucilaginado mecánico en la calidad física de café: Daño Mecánico (DM), Guayaba y Media Cara (GMC) e Impurezas (IMP), después del despulpado (d) y del desmucilaginado (D)	29
Figura 2. Calidad física del café obtenido con desmucilaginado mecánico sin previa eliminación de flotes y sin zarandear el café despulpado	30
Figura 3. Esquema de silos metálicos utilizados para estudios de almacenamiento de café en laboratorio, con aire enfriado y forzado mecánicamente	34
Figura 4. Batería de 60 silos de 30m de altura y 6m de diámetro, de ALMACAFÉ, Bello, Antioquia, para el almacenamiento de café pergamino con aireación forzada nocturna.	35
Figura 5. Contenido de humedad del café como función de las condiciones del aire tratado y del tiempo de almacenamiento.	37
Figura 6. Contenido de humedad del café enfriado en condiciones ambientales, como función del tiempo de almacenamiento.	37
Figura 7. Granos decolorados como función de las condiciones controladas del aire de enfriamiento mecánico, falta de enfriamiento y el almacenamiento tradicional en sacos.	38
Figura 8. Calidad de la bebida de café según las condiciones del aire enfriado mecánicamente, aire sin enfriar y café almacenado en sacos en forma convencional, según el tiempo de almacenamiento.	39
Figura 9. Influencia de la temperatura del aire de secado en la viabilidad de la semilla de café secada en capas delgadas.	43
Figura 10. Efecto del tiempo y temperatura de almacenamiento del café, durante su almacenamiento prolongado.	44
Figura 11. Germinación normal de las semillas de café obtenidas por desmucilaginado mecánico	46
Figura 12. Esquema del sistema de transporte por gravedad, de café cereza por cable.	55
Figura 13. Tolva seca para la recepción del café cereza.	58
Figura 14. Utilización de transportador de paletas para alimentación de despulpadoras (incluyendo las que conforman los módulos BECOLSUB) y posible separación de objetos duros, mediante captación de señales electrónicas	61
Figura 15. Despulpadoras de eje horizontal, operadas sin agua	61

Figura 16. Comportamiento de una cereza madura de café sometida a compresión entre placas paralelas.
Figura 17. Comportamiento de una cereza verde de café sometida a compresión entre placas paralelas.
Figura 18. Despulpadora No. 3 (tradicionalmente accionada por un motor de 1hp) movida a pedal.
Figura 19. Sistema mecánico que permite la calibración de la despulpadora, en operación
Figura 20. Esquema general del beneficio ecológico en el cual se utilizan zarandas y tanques tradicionales de fermentación del mucílago
Figura 21. Porcentaje de pasillas del café despulpado retiradas en la zaranda pla- na.
Figura 22. Esquema general del sistema de beneficio utilizando la tecnología BECOLSUB.
Figura 23. Zaranda para separar granos almendras, impurezas y subproductos, des- pués de secado
Figura 24. Lavado del café por agitación manual en el tanque tina. La zaranda plana clasifica el café despulpado
Figura 25. Lavado del café con mucílago fermentado en canales de correteo, mediante agitación manual.
Figura 26. Motobomba sumergible utilizada para el lavado y transporte del café.
Figura 27. Lavado del café, mediante su transporte por motobomba, utilizando cuatro enjuagues.
Figura 28. Canal semisumergido para el lavado y clasificación tradicional del café pergamino.
Figura 29. Esquema de un sistema de lavado y transporte de café lavado con bomba sumergible, con recirculación de agua.
Figura 30. Curvas características de la bomba sumergible marca IHM modelo HWH 10-21-3 de 1 HP, al transportar café lavado.
Figura 31. Corte transversal de una semilla de café despulpado ilustrando la distribución y el tamaño relativo del mucílago.
Figura 32. Volumen alto de mucílago desprendido en los primeros instantes del proceso de desmucilaginado mecánico.
Figura 33. Efecto de la velocidad de rotación de un agitador CENICAFE III (a) en el desprendimiento del mucílago (b) y en la tasa de remoción de mucílago (c)
Figura 34. Comportamiento reológico del mucílago del café y de suspensiones mucílago-café en baba.
Figura 35. Diagrama del primer prototipo, DESMULACLA, diseñado y construido en Cenicafé, en 1984, para estudiar el desmucilaginado, lavado y clasificado simultáneos del café.
Figura 36. Desmucilaginador por fricción entre capas delgadas, CENICAFÉ- B-I.
Figura 37. Esquema del desmucilaginador de barras, CENICAFÉ-B-II

Figura 38. Desmucilaginador CENICAFÉ-C-I provisto de tornillo sinfín lavador ascendente	85
Figura 39. Desmucilaginador CENICAFÉ-C-II	87
Figura 40. Rotor robusto tipo COLMECANO, compuestos por piñones agitadores, fundidos en aluminio, utilizado tradicionalmente en las máquinas repasadoras tipo COLMECANO.	87
Figura 41. Aspecto general del módulo DESMULAC desarrollado en Cenicafé	88
Figura 42. Desmucilaginador de café en baba, vertical, de flujo ascendente desarrollado por Fukunaga, 1957.	89
Figura 43. Tasa Cortante Promedio Aplicada (TCPA), por una rotor COLMECANO, con agitadores de 13,5cm de diámetro externo y 9,0cm de diámetro interno	90
Figura 44. Efecto de la velocidad de rotación en el consumo de potencia para un equipo DESLIM 3000, operado con alimentación de 1.500kg de café despulpado/h	91
Figura 45. Esquema general, principales componentes y elementos del desmuci- laginador, lavador, limpiador DESLIM, para café.	93
Figura 46. Imagen virtual del modelo BECOLSUB 100 lograda por computador	95
Figura 47. Imagen virtual interior del equipo DESLIM 300.	95
Figura 48. Desmucilaginador modelo DESLIM 1000, constituyente de un equipo BECOLSUB construido por la industria nacional	97
Figura 49. Modelo DESLIM 3000 con despulpadora de doble disco y capacidad de 2.500kg café cereza/hora	98
Figura 50. Calidad física del café obtenido con el equipo DESLIM 600	98
Figura 51. Contaminación generada por la utilización del agua posterior al proceso desmucilaginado en equipos DESLIM, para la eliminación de los flotes e impu-	0.0
rezas.	99
Figura 52. Sistema de zaranda clasificadora, transportador por el sistema cabledisco, 7 tanques de fermentación, y lavado mediante motobomba utilizada para el transporte del café. Cenicafé, Paraguaicito, Quindío.	100
Figura 53. Simplificación del sistema de lavado, limpiando y clasificando el café mediante el módulo BECOLSUB, en una cuarta parte del espacio anterior. Cenica-fé, Paraguaicito, Quindío, 1996	100
Figura 54. Variables de diseño de un hidrociclón.	102
Figura 55. Hidrociclón en operación, clasificando café pergamino	102
Figura 56. Diagrama que representa la descarga superior del hidrociclón para café.	103
Figura 57. Operación del hidrociclón acoplado a un módulo BECOLSUB, en Ce-	
nicafé.	105
Figura 58. Esquema de un transportador neumático de presión positiva	107
Figura 59. Tornillo sinfín para mezcla y transporte de la pulpa de café con mucílago.	108
Figura 60. Dimensiones principales del rotor del transportador de un tornillo sin- fín.	109

Figura 61. Gráfico utilizado para la selección del diámetro exterior en transportadores de tornillo sinfín para pulpa de café sola o mezclada con mucílago concentrado	110
Figura 62. Dimensiones para la construcción de los discos del tornillo sinfín	112
Figura 63. Módulo demostrativo BECOLSUB, dentro de un beneficiadero construido en guadua. Cenicafé, Chinchiná.	113
Figura 64. Esquema tridimensional del módulo BECOLSUB (Beneficiadero Ecológico, con Manejo de Subproductos)	114
Figura 65. Módulo BECOLSUB, con zaranda cilíndrica para clasificación del café despulpado.	115
Figura 66. Vista lateral del módulo BECOLSUB provisto de zaranda cilíndrica	115
Figura 67. Esquema del Módulo BECOLSUB 600 móvil	116
Figura 68. Módulo BECOLSUB 600 móvil, remolcado por un vehículo campero	117
Figura 69. Café de muy alta calidad obtenido con el BECOLSUB móvil	117
Figura 70. Pulpa mezclada con mucílago, que debe utilizarse preferencialmente como sustrato en un lombricultivo cubierto.	117
Figura 71. Selección del equipo DESLIM y módulo BECOLSUB en función de la producción de la finca y del número de horas de funcionamiento del módulo	118
Figura 72. Comparación de porcentajes de control total de contaminación, con adición de cisco de café al mucílago.	121
Figura 73. Pruebas de campo con el Módulo BECOLSUB 1000 móvil, realizadas en la finca "La Palma", Cundinamarca	128
Figura 74. Esquema de la Central de Beneficio Ecológico de Anserma, Caldas	130
Figura 75. Central de Beneficio Ecológico de Anserma, Caldas	130
Figura 76. Esquema del manejo de los subproductos pulpa y mucílago en la Central de Beneficio Ecológico de Anserma, CBEA.	132
Figura 77. Comparación entre los valores estimados de la relación de café cereza al café pergamino seco.	134
Figura 78. Histograma de la calidad del café cereza recibido en la cosecha principal de 1995 en la Central de Beneficio Ecológico de Anserma, Caldas	135
Figura 79. Influencia del desmucilaginado mecánico en al calidad física del pergamino (Promedio de 29 evaluaciones)	135
Figura 80. Influencia del desmucilaginado mecánico en la calidad física del pergamino (Promedio de 16 evaluaciones)	136
Figura 81. Influencia del desmucilaginado mecánico en la disminución de los granos guayaba (G) y media cara (MC).	136
Figura 82. Influencia del desmucilaginado mecánico en aumento del daño mecánico del café pergamino.	137
Figura 83. Análisis físico de los granos obtenidos del desmucilaginador de pasillas en la Central de Beneficio de Anserma.	137
Figura 84. Recuperación de granos buenos en los flotes del café procesado en la Central de Beneficio de Anserma.	138

Figura 85. Seminario internacional sobre Caficultura Sostenible - Beneficio Ecológico del Café, una Opción Ecológica y Rentable. Octubre, 1996. Fotografía del grupo de participantes y del plegable promocional del evento.	143
Figura 86. Esquema del determinador de Humedad CENICAFÉ MH-2	149
Figura 87. Banco de ocho determinadores de humedad CENICAFÉ MH-2 para control del café recibido y secado en la CBEA.	151
Figura 88. Comparación de dos medidores indirectos de humedad con relación al método estándar de estufa.	154
Figura 89. Secador solar rotatorio para café.	156
Figura 90. Comparación del secado solar con capas de café colocadas 1) en el secador de bandejas rotatorias, 2) sobre una superficie horizontal perforada y 3) sobre un piso de madera, utilizado en los carros secadores tradicionales (77)	157
Figura 91. Secador Solar con estructura de marquesina de plástico en forma parabólica	157
Figura 92. Comparación del secador de capas de café dispuestas en los carros tradicionales y en el secador solar parabólico	158
Figura 93. Comparación de los efectos de remoción del rastrillo tradicional y el rastrillo revolvedor CENICAFÉ.	159
Figura 94. Rastrillo provisto de un muelle o resorte para prolongar su vida útil	159
Figura 95. Ventilador centrífugo forzando aire a un silo-secador CENICAFÉ	161
Figura 96. Relaciones de caudales y presiones por el paso del aire a través de capas de granos de café pergamino.	163
Figura 97. Curvas de secado de capa fija sin inversión del flujo del aire	167
Figura 98. Curvas de secado de capa fija con inversión de la dirección del flujo del aire	167
Figura 99. Silo secador tipo CENICAFÉ para café pergamino, en capas estáticas de secado y presecado, con inversión de la dirección del flujo del aire. Descarga neumática	168
Figura 100. Esquema de un silo-secador vertical de dos capas estáticas, provisto de inversión de la dirección del flujo del aire, solamente en la cámara de secado	169
Figura 101. Equipo de secado "EScafé" para el aprovechamiento de energía calorífica en los hogares campesinos	172
Figura 102. Secadores intermitentes de flujos concurrentes, CENICAFÉ-IFC	173
Figura 103. Esquema de un secador intermitente de flujos concurrentes, CENICA- FÉ-IFC.	174
Figura 104. Diagrama tridimensional de un Secador Intermitente, de Flujos Concurrentes, CENICAFÉ-IFC.	175
Figura 105. Uniformidad en las diferencias entre las humedades absolutas de entrada y de salida al secador	176
Figura 106. Curva de secado obtenida en los secadores CENICAFÉ-IFC. Se caracteriza por la reducción lineal, y humedad uniforme durante el tiempo de secado.	176

Figura 107. Comparación entre las temperaturas del aire de secado y de las temperaturas de los granos en una operación típica de los secadores CENICAFÉ-IFC	177
Figura 108. Calidad del café pergamino seco en el secador IFC de torre	178
Figura 109. Uniformidad del café pergamino seco en el secador IFC de torre,	170
Anserma, Caldas	179
Figura 110. Calidad de la almendra del café secado en el secador IFC de torre, Anserma, Caldas	179
Figura 111. Curva de contenido de humedad de equilibrio del café pergamino, calculada con la Ecuación 11.	181
Figura 112. Curvas de capa delgada para secado y almacenamiento de café pergamino, calculadas con la Ecuación 14	183
Figura 113. Comparación de datos experimentales y curvas simuladas de enfriamiento (modelo de Thompson) de café pergamino, colocados a granel, en silos.	186
Figura 114. Comparación de datos experimentales y curvas simuladas de secado de café, colocados en capas estáticos a dos alturas diferentes	187
Figura 115. Comparación de datos experimentales con curvas de simulación de secado de café pergamino, en secador intermitente de flujos concurrentes, IFC, mediante dos modelos matemáticos (M.S.U. y de Thompson)	187
Figura 116. Pérdida o ganancia en la venta del café lavado al recibir la mitad del peso como equivalente a café pergamino seco	194
Figura 117. Diagrama de flujo del método CERPER original para el recibo de café cereza.	197
Figura 118. Valores de rendimientos determinados por los métodos de vía húmeda, vía seca y el método CERPER original, comparados con el rendimiento real	198
Figura 119. Desmucilaginador, Determinador de Humedad MH-2, Despulpadora. (Elementos del método CERPER modificado, Anserma, Caldas.)	199
Figura 120. Diagrama de flujo del método CERPER modificado	200
Figura 121. Comparación de rendimientos reales y estimados por dos métodos de cálculo evaluados en la Central de Beneficio Ecológico de Anserma	200
Figura 122. Lechos del lombricultivo irrigados con aguas residuales no controladas en el beneficio de café	204
Figura 123. Almacenamiento de pulpa mezclada con mucílago de café en la fosa cubierta, materia prima para el lombricultivo en la Central de Beneficio Ecológico de Anserma, Caldas.	206
Figura 124. Lombrices en preparación para la recolección en el lombricultivo	207
Figura 125. Recolección del abono orgánico, resultado del lombricultivo con pulpa de café.	208
Figura 126. Secado del abono orgánico en un Secador Solar Parabólico	209
Figura 127. Características básicas aplicables a los beneficiaderos tradicional y BECOLSUB.	225
Figura 128. Características de los módulos BECOLSUB	226
Figura 129. Características económico-financieras relacionadas con los módu- os BECOLSUB.	227

Figura 130. Variables de respuesta correspondientes a cálculos físicos y económicos.	228
Figura 131. Resumen de los datos de entrada y de respuesta del programa ANEFSUB.	229
Figura 132. Resultados de la relación beneficio/costo vs. pérdidas física y pago por contaminación	230
Figura 133. Gráfico de la relación beneficio/costo ajustada teniendo en cuenta la eliminación de las pérdidas físicas y los pagos por contaminación	231
Figura 134. Selección de la variable de estudio y de la relación beneficio/costo deseado.	231
Figura 135. Selección de la variable de estudio	232
Figura 136. Resultado del valor de la variable de estudio.	232
Figura 137. Reactores hidrolítico y metanogénico del sistemas de descontamina- ción de aguas residuales del lavado del café.	238
Figura 138. Esquema del sistema de tratamiento de aguas de lavado del café, por medio de reactores metanogénicos.	238

ÍNDICE DE TABLAS

Pá	gina
Tabla 1. Calificación de las características sensoriales de las variedades de café Coffea arabica L. cultivadas en Colombia*	20
Tabla 2. Defectos del grano y de la bebida de café de acuerdo con la etapa del proceso de cultivo, beneficio y trilla.	22
Tabla 3. Calidad de la bebida del café obtenido con remoción mecánica del mucílago.	31
Tabla 4. Evaluación comparativa de la calidad en taza del café obtenido con fermentación natural y desmucilaginado mecánico.	31
Tabla 5. Condiciones controladas del aire y su influencia en el contenido final de humedad de los granos.	38
Tabla 6. Comparación de los granos decolorados según el sistema de almacenamiento empleado luego de 1 año de almacenamiento.	39
Tabla 7. Condiciones de almacenamiento de la semilla de café, en tres pisos térmicos en la zona cafetera colombiana.	43
Tabla 8. Promedios de los valores de germinación de la semilla obtenida en diferentes modelos BECOLSUB.	47
Tabla 9. Porcentaje de daño de doble raíz causado por diferentes modelos BECOLSUB utilizado para despulpar y desmucilaginar mecánicamente la semilla de café.	47
Tabla 10. Porcentaje de raíz bifurcada causado por diferentes modelos BECOLSUB utilizados para el despulpado y el desmucilaginado mecánico de la semilla de café.	47
Tabla 11. Ángulos de deslizamiento en grados, para el café en diferentes estados y sobre distintas superficies*	57
Tabla 12. Dimensiones y capacidad de tolvas de 1,2m de altura, para el recibo de café en cereza.	59
Tabla 13. Dimensiones y capacidad de tolvas de 1,4m de altura para café cereza	59
Tabla 14. Porcentaje de pasillas de café retiradas en la zaranda plana ubicada después de la despulpadora.	68
Tabla 15. Calidad física del café procesado en el beneficiadero para el pequeño caficultor de Cenicafé (13).	69
Tabla 16. Composición química del mucílago del café. Tomado de Ríos (149)	78
Tabla 17. Parámetros obtenidos en la evaluación del desempeño del desmucilaginador prototipo DESMULACLA.	82

Tabla 18. Desempeño comparativo de diferentes desmucilaginadores evaluados en Cenicafé.	84
Tabla 19. Desempeño comparativo de diferentes desmucilaginadores mecánicos desarrollados en Cenicafé.	86
Tabla 20. Desempeño comparativo de desmucilaginadores mecánicos	87
Tabla 21. Características principales de los tres modelos DESLIM para desmucilaginar mecánicamente el café.	92
Tabla 22. Niveles de producción anual de café (ton y @ cps/año) y módulos BECOLSUB apropiados.	93
Tabla 23. Características técnicas de los equipos DESLIM y los módulos BECOLSUB 100, 300, 600, 1000 y 3000 (kg de café cereza/hora)	96
Tabla 24. Dimensiones del hidrociclón experimental de Cenicafé para la clasificación del café.	103
Tabla 25. Dimensiones del hidrociclón para diferentes condiciones de bombeo	103
Tabla 26. Desempeño del prototipo de un hidrociclón, diseñado para lavado y clasificación de café pergamino. (19*, 182**, 95***)	104
Tabla 27. Velocidades mínimas del aire para el transporte neumático, vertical y horizontal de café pergamino y de la pulpa de café.	107
Tabla 28. Potencias y diámetros de ejes en tubería galvanizada, recomendados para transportadores de tornillo sinfín con pulpa sola o mezclada con mucílago concentrado.	111
Tabla 29. Dimensiones de los discos para la construcción del rotor del transportador de tornillo sinfín.	112
Tabla 30. Variables y unidades utilizadas en los círculos para seleccionar el módulo BECOLSUB.	119
Tabla 31. Actividad de la lombriz roja californiana Eisenia foetida Savigny en dos sustratos.	121
Tabla 32. Caracterización del café cereza recibido. (Muestras de 500g)	122
Tabla 33. Caracterización del café despulpado (Muestra de 100g)	123
Tabla 34. Caracterización del café desmucilaginado (Muestra de 100 g)	124
Tabla 35. Caracterización del café pergamino seco proveniente del beneficio en un BECOLSUB móvil (Muestra de 100g).	124
Tabla 36. Velocidades de giro de los diferentes ejes del BECOLSUB móvil (rpm)	125
Tabla 37. Capacidad de proceso del módulo BECOLSUB 600 móvil	125
Tabla 38. Consumo de agua del módulo BECOLSUB 600 móvil	126
Tabla 39. Flujos de agua+mucílago generados por en el BECOLSUB 600 móvil	126
Tabla 40. Flujos de agua + mucílago, drenados y análisis de DQO	126
Tabla 41. Control de la contaminación generada, por el módulo BECOLSUB 600 móvil.	127
Tabla 42. Desempeño general de la tecnología BECOLSUB móvil, en el beneficio de café.	127
Tabla 43. Desempeño general de la tecnología BECOLSUB 1000 móvil	129

BENEFICIO ECOLÓGICO DEL CAFÉ

Tabla 44. Tasas de producción de lombricompuesto obtenidas en la CBEA, 1996	138
Tabla 45. Contenidos de humedad de muestras de café pergamino húmedo obtenidos en la estufa y en cinco determinadores de humedad MH-2. Se incluyen los límites de confianza para el promedio al 5%.	152
Tabla 46. Comparación del daño mecánico producido por la utilización del rastri- llo tradicional y el rastrillo revolvedor, de dientes, CENICAFÉ.	160
Tabla 47. Selección del sistema y especificaciones de secado según la producción de la finca	161
Tabla 48. Caudales recomendados para el secado del café pergamino en capas estáticas.	162
Tabla 49. Poder calorífico de algunos combustibles utilizados en Colombia	166
Tabla 50. Tiempo total de secado para cada plataforma y para cada prueba, en un secador solar de carros. Humedad final = 11%.	170
Tabla 51. Valores obtenidos de la energía disponible, la energía utilizada en el secado, el tiempo de secado y el contenido de humedad final.	173
Tabla 52. Pérdidas o ganancias por comercialización del café lavado*	193
Tabla 53. Pérdidas de peso del café durante el proceso de fermentación según Carbonel y Vilanoba (32).	195
Tabla 54. Pérdidas de peso del café durante el proceso de fermentación según Boyce (27)	195
Tabla 55. Caracterización de la borra del café procedente de la Fábrica de Café Liofilizado, Chinchiná, utilizada para preparar el manto de lodos anaeróbicos	239
Tabla 56. SMTA prototipos instalados en finca y promedios de remoción de DQO estimadas.	240
Tabla 57. Características de las corrientes líquidas del SMTA Cenicafé durante	241
Tabla 58. Densidades y equivalencias aproximadas de peso entre los diferentes estados del café, de la pulpa y del cisco.	265

ÍNDICE DE ECUACIONES

Página
Ecuación < 1 > Pérdidas de presión en una tubería vertical de agua con café, en función de la velocidad y de la concentración
Ecuación < 2 > Pérdidas de presión en una tubería horizontal de agua con café, en función de la velocidad y de la concentración
Ecuación < 3 > Producción de la finca en kilogramos de cps por día PFKPpD = PF@PpA x REL@aK x PDP / 100
Ecuación < 4 > Producción de la finca en kilogramos de cc por día PFKCCpD = PFKPpD x RelCCaP
Ecuación < 5 > Capacidad horaria de la unidad BECOLSUB CapB = PFKCCpD / HorOp
Ecuación < 6 > Caudal específico como función de la pérdida de presión específica para café pergamino
Ecuación < 7 > Pérdida de presión específica como función de la pérdida del caudal específico para café pergamino
Ecuación < 8 > Potencia necesaria para que el ventilador suministre el caudal y la presión requeridos para el correcto secado del café pergamino
Ecuación < 9 > Balance general de energía
Ecuación < 10 > Cantidad de energía calorífica necesaria para aumentar la temperatura del aire que fluye con un caudal Q

BENEFICIO ECOLÓGICO DEL CAFÉ

Ecuación < 11 >
Contenido del humedad (% base seca) de equilibrio del café pergamino, como función de la humedad relativa (dec) y la temperatura (°C)
Ecuación < 12 >
Calor latente de vaporización del café pergamino
Ecuación < 13 >
Ecuación de secado de capa delgada de café pergamino, en forma diferencial 182
Ecuación < 14 >
Ecuación de secado de capa delgada de café pergamino,
integrada para condiciones controladas del aire
Ecuación < 15 >
Ecuación de Fíck, que describe la distribución
de la humedad dentro del café pergamino
Ecuación < 16 >
Difusión de humedad dentro de un grano
de café en función de su humedad y temperatura
Ecuación < 17 >
Calor específico del café pergamino
Ecuación < 18 >
Densidad aparente del café pergamino, en función del contenido de humedad 185
Ecuación < 19 >
Principio básico de rentabilidad
Ecuación < 20 >
Comparación de ingresos de las dos tecnologías
de beneficio en un período dado de análisis

PRESENTACIÓN

Nos complace presentar este libro que expresa el resumen de las investigaciones de más de una década realizadas por científicos de Cenicafé, en torno al tema del Beneficio Ecológico del café colombiano, con el soporte científico de universidades del país y validadas en su oportunidad y en sus distintas etapas en experiencias con los caficultores del país.

La Federación Nacional de Cafeteros de Colombia, ha puesto su mayor empeño en desarrollar tecnologías efectivas que propendan por el bienestar de quienes se dedican a la producción de café, para aportarles a su tarea cotidiana elementos técnicos y científicos aplicables, generados en la investigación profunda y concienzuda, y perfectamente adaptados a sus necesidades.

El libro, además, espera ofrecer nuevos aportes a los técnicos del Servicio de Extensión de nuestra Institución y a los caficultores en general, elementos necesarios para la caficultura del futuro en la que el equilibrio ecológico y la sostenibilidad serán elementos fundamentales.

Antonio Herrón Ortiz Gerente Técnico Federación Nacional de Cafeteros de Colombia

PRÓLOGO

Esta publicación presenta ante la comunidad cafetera colombiana los avances de la investigación aplicada en el beneficio del café y se espera que se constituya en la guía conceptual y práctica, básica, para apoyar el actual programa de la FEDERA-CIÓN NACIONAL DE CAFETEROS DE COLOMBIA que busca la transformación de los beneficiaderos existentes y la construcción de nuevos beneficiaderos que reúnan las especificaciones que los caracterice como beneficiaderos ecológicos.

Se pretende con las tecnologías consignadas en esta obra que el café conserve, durante los procesos de transformación de cereza a pergamino seco, su calidad intrínseca, cumpliendo con las normas de comercialización. Con ello, se logra la mayor rentabilidad para el caficultor, se altera en mínimo grado la calidad del agua utilizada que además, es la estrictamente necesaria para efectuar el beneficio por vía húmeda, y se logra un manejo apropiado de los subproductos.

Esta obra se basa esencialmente en las investigaciones realizadas en los últimos quince años en Cenicafé, período en el que se creó el PROGRAMA DE POST-COSECHA, conformado por las disciplinas de Ingeniería Agrícola y Química Industrial.

Gracias al apoyo de la FEDERACIÓN NACIONAL DE CAFETEROS y al aporte científico de las universidades colombianas, principalmente de los programas de Ingeniería Agrícola, a través de las actividades de año sabático de ocho profesores y de tesis de cincuenta estudiantes, el PROGRAMA DE POST-COSECHA en un período relativamente corto, ha logrado proponer modificaciones sustanciales en todas las etapas del beneficio tradicional del café que se practica en nuestro país y en los países que utilizan comercialmente el sistema de beneficio por vía húmeda, desde los propios inicios de la producción comercial del grano. Estos nuevos procedimientos no alteran la calidad del café, favorecen la conservación del medio ambiente y hacen más rentable el negocio.

La fundamentación teórica integral de los trabajos y la continuidad de las ejecuciones resultantes de la programación científica a largo plazo, permiten presentar las técnicas de carácter ecológico y rentable del beneficio húmedo y las recomendaciones válidas para obtener la reconocida calidad del café colombiano, la eliminación de etapas innecesarias, la simplificación de la mayoría de los procedimientos y la disminución significativa de las pérdidas cualitativas y cuantitativas que ocurren en el beneficio tradicional del café. Además, coincide su aplicación con menores necesidades de mano de obra y menor requerimiento de espacio.

En especial, se recomienda la transformación en forma simple y eficiente de los subproductos pulpa y mucílago, causantes de contaminación, en productos de valor comercial como el abono orgánico y la proteína animal.

Muchas fueron las etapas constructivas de la nueva tecnología, desde los estudios preliminares tendientes a utilizar la fuerza de la gravedad o minimizar los consumos de agua en el transporte del café en los diferentes estados y de la pulpa, hasta conseguir la amplia aceptación nacional e internacional de la tecnología. Hace unos cinco años estábamos relativamente lejos de esta realidad. De no haberse contado con el continuado apoyo de la FEDERACIÓN NACIONAL DE CAFETEROS DE COLOMBIA, todo el esfuerzo pudiera haber quedado en una ilusión, como ocurre con la gran mayoría de las investigaciones de largo plazo en los países en desarrollo.

Otros temas de gran importancia técnica y económica relacionados con la industria productora del café son: 1) el secado del café pergamino, 2) el almacenamiento del grano del café y de la semilla, 3) las alternativas de la comercialización del café incluyendo la determinación exacta y rápida de la conversión café cereza a café pergamino seco, 4) la descontaminación, por medios biológicos, de las aguas residuales que no fue posible eliminar físicamente. Estos también fueron temas de investigación y de novedosos resultados que, de aplicarse masivamente, permitirán obtener más café y de mayor uniformidad de humedad final en el secado, mantener la excelente calidad del café pergamino y de la semilla, durante un tiempo mayor que el doble del empleado en el almacenamiento convencional, permitir una comercialización justa, por el pago adecuado al productor y por último controlar en forma complementaria el 97% de la contaminación potencial.

En forma general, consideramos que este aporte de la ingeniería aplicada a la producción agrícola, tema específico de la nueva carrera de Ingeniería Agrícola en Colombia, puede ser repetida y superada para otros productos agrícolas y pecuarios. No es extraño que los aportes técnicos a la producción de los productos agrícolas primarios de los países en desarrollo sólo tengan lugar al final del presente siglo. Así ocurre en todos los países en desarrollo y para todas las materias primas. Simplemente muy pocos ingenieros han tenido la oportunidad de investigar, a largo plazo, alternativas a los problemas propios de éstos países que han conservado por más de un siglo las tecnologías que los colonizadores improvisaron. La FEDERA-CIÓN NACIONAL DE CAFETEROS DE COLOMBIA, con la visión que siempre la ha caracterizado, le ha dado, en el caso del café en Colombia, la oportunidad, el ambiente, y los recursos necesarios a un pequeño grupo de ingenieros investigadores para producir el cambio.

En un período de más de una década de desarrollo tecnológico, en un Centro de importancia nacional e internacional como Cenicafé, son muchas y valiosas las ayudas recibidas. Queremos expresar nuestros agradecimientos a las directivas de la Federación Nacional de Cafeteros y a Cenicafé por el soporte brindado siempre en forma oportuna y continua.

Nuestro reconocimiento a quienes crearon y consolidaron el PROGRAMA DE POST-COSECHA en Cenicafé, en particular a los doctores Germán Valenzuela Samper, ex-Subgerente General Técnico de FEDERACAFÉ; Silvio Echeverri Echeverri, ex-Director de Cenicafé; Óscar Cardona Álvarez, ex-Jefe del Departamento Administrativo de Cenicafé; Antonio Herrón Ortíz, Gerente Técnico de FEDERACAFÉ, y Gabriel Cadena Gómez, Director de Cenicafé.

A los departamentos de Ingeniería Agrícola de las universidades colombianas, a los Comités Departamentales de Cafeteros y a los mecánicos y los auxiliares del Programa de POST-COSECHA que construyeron, con gran profesionalismo, dedicación y esmero, la infraestructura en la que hemos trabajado, incluyendo plantas industriales de gran capacidad, como la Central de Beneficio Ecológico de Anserma, Caldas.

Agradecemos a las industrias colombianas que entendieron y compartieron el esfuerzo naturalista de la Federación de Cafeteros y trabajaron armónicamente con Cenicafé, para ofrecer a los agricultores la tecnología BECOLSUB. A los doctores Hernando Duque Orrego, de Cenicafé y al doctor Alfonso Parra Coronado, de la Universidad Nacional - Bogotá, por las correcciones y sugerencias al manuscrito. Al doctor Fernando Álvarez Mejía, de la Universidad Nacional de Medellín, por las múltiples y muy valiosas colaboraciones.

Gonzalo Roa Mejía.

Editor

Chinchiná, Caldas, Colombia.