Ir para o menu de navegação principal Ir para o conteúdo principal Ir para o rodapé

Distribuição e tendências da precipitação horária na região cafeeira do nordeste da América do Sul

Como Citar
Ramírez-Carabalí, C., Sarmiento-Herrera, N., & García-López, J. C. (2024). Distribuição e tendências da precipitação horária na região cafeeira do nordeste da América do Sul. Cenicafé Journal, 75(1), e75103. https://doi.org/10.38141/10778/75103

Dimensions
PlumX

Palavras chave
Hourly rainfall

diurnal cycle

innovative trend analysis

Mann-Kendall

coffee

Cenicafé

Lluvia horaria

ciclo diurno

análisis de tendencias innovadoras

Mann Kendall

café

Cenicafé

Colombia

Precipitação horária

ciclo diurno

análise de tendência inovadora

Mann-Kendall

café

Cenicafé

##articleSummary.lastnum##
seção
Artigos
Termos de licença (See)
Carolina Ramírez-Carabalí
Ninibeth Sarmiento-Herrera
Juan Carlos García-López

Resumo

Os dados de precipitação horária das estações meteorológicas da Federação Nacional dos Cafeicultores da Colômbia, localizadas nas regiões produtoras de café do nordeste da América do Sul, foram analisados para determinar as tendências da média anual de horas de precipitação, da precipitação diurna e da precipitação horária máxima entre 1980 e 2019. Os testes de tendência usados incluem o teste Mann-Kendall (MK) e a Análise de Tendência Inovadora (ITA). Em uma média anual, há 919 horas de precipitação. A precipitação máxima em uma hora está principalmente nas categorias moderada a forte e forte (20 a 60 mm/h), com a tendência predominantemente crescente sem significância estatística. Com base no ITA, a precipitação máxima por hora está aumentando nas estações de Pueblo Bello (Cesar), Francisco Romero (Norte de Santander), La Catalina (Risaralda), Julio Fernández (Valle del Cauca) e Jorge Villamil (Huila); e diminuindo em Granja Tibacuy (Cundinamarca) e Albán (Valle del Cauca). Embora não tenha sido encontrado um padrão espacial para essas tendências, observou-se que o número de eventos de precipitação de diferentes intensidades aumentou na maioria das estações: em Pueblo Bello, Santagueda (Caldas) e Manuel Mejía (Cauca), foi observada uma tendência de aumento em todas as categorias de precipitação, enquanto em Julio Fernández houve uma tendência de diminuição. Esses resultados caracterizam e atualizam o estudo da distribuição da precipitação horária na região mencionada e identificam tendências na precipitação horária máxima e no número de eventos de precipitação.

Carolina Ramírez-Carabalí, Centro Nacional de Investigaciones de Café

Investigador Científico I, Disciplina de Agroclimatología, Centro Nacional de Investigaciones de Café


Ninibeth Sarmiento-Herrera, Centro Nacional de Investigaciones de Café

Asistente de Investigación. Disciplina de Agroclimatología, Centro Nacional de Investigaciones de Café, Cenicafé. 


Juan Carlos García-López, Centro Nacional de Investigaciones de Café

Investigador Científico II, respectivamente. Disciplina de Agroclimatología, Centro Nacional de Investigaciones de Café, Cenicafé


Referências (See)

  1. Alifujiang, Y., Abuduwaili, J., Maihemuti, B., Emin, B., & Groll, M. (2020). Innovative Trend Analysis of Precipitation in the Lake Issyk-Kul Basin, Kyrgyzstan. Atmosphere, 11(4), 332. https://doi.org/10.3390/atmos11040332
  2. Ávila, Á., Guerrero, F., Escobar, Y., & Justino, F. (2019). Recent Precipitation Trends and Floods in the Colombian Andes. Water, 11(2), 379. https://doi.org/10.3390/w11020379
  3. Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., & Poveda, G. (2019). Seasonal Shift of the Diurnal Cycle of Rainfall Over Medellin’s Valley, Central Andes of Colombia (1998–2005). Frontiers in Earth Science, 7, 92. https://doi.org/10.3389/feart.2019.00092
  4. Beguería, S., & Lorente, A. (2002). Landslide hazard mapping by multivariate statistics: Comparison of methods and case study in the Spanish Pyrenees [Preprint]. CSIC. http://dspace.library.uu.nl/handle/1874/23543
  5. Carmona, A. M., & Poveda, G. (2014). Detection of long-term trends in monthly hydro-climatic series of Colombia through Empirical Mode Decomposition. Climatic Change, 123(2), 301–313. https://doi.org/10.1007/s10584-013-1046-3
  6. Cerón, W. L., Andreoli, R. V., Kayano, M. T., Canchala, T., Ocampo-Marulanda, C., Avila-Diaz, A., & Antunes, J. (2022). Trend Pattern of Heavy and Intense Rainfall Events in Colombia from 1981–2018: A Trend-EOF Approach. Atmosphere, 13(2), 156. https://doi.org/10.3390/atmos13020156
  7. Correa Ortiz, L. C., Ocampo López, O. L., & Alba Castro, M. F. (2021). Análisis de tendencia de temperatura y precipitación para el departamento de Caldas (Colombia), mediante wavelets. Ciencia e Ingeniería Neogranadina, 31(1), 37–52. https://doi.org/10.18359/rcin.4900
  8. Delgado, V., Zambrano, J., & Lez, J. V. (2020). The knowledge of the spatial-temporal rainfall patterns as a tool for storm-design. Case study: Manizales, Colombia [Preprint]. Authorea. https://doi.org/10.22541/au.158921470.04015184
  9. Deshpande, N. R., Kulkarni, A., & Krishna Kumar, K. (2012). Characteristic features of hourly rainfall in India. International Journal of Climatology, 32(11), 1730–1744. https://doi.org/10.1002/joc.2375
  10. Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Chapman and Hall/CRC. https://doi.org/10.1201/9780429246593
  11. Federación Nacional de Cafeteros. (s. f.). Estadísticas Cafeteras. Federación Nacional de Cafeteros. Recuperado 31 de enero de 2023, de https://federaciondecafeteros.org/wp/estadisticas-cafeteras/
  12. García-Delgado, H., Machuca, S., & Medina, E. (2019). Dynamic and geomorphic characterizations of the Mocoa debris flow (March 31, 2017, Putumayo Department, southern Colombia). Landslides, 16(3), 597–609. https://doi.org/10.1007/s10346-018-01121-3
  13. Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2019). Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. International Journal of Climatology, 39(1), 18–30. https://doi.org/10.1002/joc.5777
  14. Giorgi, F., Im, E.-S., Coppola, E., Diffenbaugh, N. S., Gao, X. J., Mariotti, L., & Shi, Y. (2011). Higher Hydroclimatic Intensity with Global Warming. Journal of Climate, 24(20), 5309-5324. https://doi.org/10.1175/2011JCLI3979.1
  15. Giraldo-Osorio, J., Trujillo-Osorio, D., & Baez-Villanueva, O. (2022). Analysis of ENSO-Driven Variability, and Long-Term Changes, of Extreme Precipitation Indices in Colombia, Using the Satellite Rainfall Estimates CHIRPS. Water, 14(11), 1733. https://doi.org/10.3390/w14111733
  16. Gómez Blanco, J. A. (2010). Análisis de las precipitaciones horarias y decadales en Colombia. IDEAM.
  17. Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103(2), 351–370. https://doi.org/10.2134/agronj2010.0303
  18. Helwig, N. E. (2023). nptest: Nonparametric Bootstrap and Permutation Tests (1.1) [Software]. https://cran.r-project.org/web/packages/nptest/index.html
  19. Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., & Zhang, H.-M. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. Journal of Climate, 30(20), 8179–8205. https://doi.org/10.1175/JCLI-D-16-0836.1
  20. Instituto de Hidrología, Meteorología y Estudios Ambientales. (s/f). Boletín Semanal para el Sector Agrícola. Recuperado el 5 de mayo de 2024, de http://www.ideam.gov.co/web/tiempo-y-clima/boletin-semanal-de-seguimiento-y-pronostico
  21. Jaramillo, A. (2005). Lluvias máximas en 24 horas para la región Andina de Colombia. Revista Cenicafé, 56(4), 250-268.
  22. Jaramillo, A. (2018). El clima de la caficultura en Colombia. Cenicafé. https://doi.org/10.38141/cenbook-0031
  23. Jaramillo, A., & Kogson, F. (1994). Características de las lluvias máximas en la zona cafetera colombiana. Revista Cenicafé, 45(1), 25–34. https://biblioteca.cenicafe.org/handle/10778/1131/
  24. Kendall, M. G. (1948). Rank correlation methods. Griffin.
  25. Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245–259. https://doi.org/10.2307/1907187
  26. Mapes, B. E., Warner, T. T., & Xu, M. (2003). Diurnal Patterns of Rainfall in Northwestern South America. Part III: Diurnal Gravity Waves and Nocturnal Convection Offshore. Monthly Weather Review, 131(5), 830-844. https://doi.org/10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2
  27. Mapes, B. E., Warner, T. T., Xu, M., & Negri, A. J. (2003). Diurnal Patterns of Rainfall in Northwestern South America. Part I: Observations and Context. Monthly Weather Review, 131(5), 799–812. https://doi.org/10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2
  28. Marín Salazar, J. P. (2017). Dinámica de los eventos hidroclimáticos extremos en la cuenca del río Chinchiná por efecto de variabilidad climática [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/61995
  29. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., & Zhou, B. (Eds.). (2021). Summary for policymakers. En Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3-32). Cambridge University Press. https://doi.org/10.1017/9781009157896.001
  30. Mayorga, R., Hurtado, G., & Benavides, H. (2011). Evidencias de cambio climático en Colombia con base en información estadística (Nota Técnica IDEAM–METEO/001-2011). Instituto de Hidrología, Meteorología y Estudios Ambientales. http://www.ideam.gov.co/documents/21021/21138/Evidencias+de+Cambio+Clim%C3%A1tico+en+Colombia+con+base+en+informaci%C3%B3n+estad%C3%ADstica.pdf/1170efb4-65f7-4a12-8903-b3614351423f
  31. McLeod, A. I. (2022). Kendall: Kendall Rank Correlation and Mann-Kendall Trend Test (2.2.1) [Software]. https://cran.r-project.org/web/packages/Kendall/index.html
  32. Mesa, O., Urrea, V., & Ochoa, A. (2021). Trends of Hydroclimatic Intensity in Colombia. Climate, 9(7), 120. https://doi.org/10.3390/cli9070120
  33. Morales-Acuña, E., Linero-Cueto, J. R., & Canales, F. A. (2021). Assessment of Precipitation Variability and Trends Based on Satellite Estimations for a Heterogeneous Colombian Region. Hydrology, 8(3), 128. https://doi.org/10.3390/hydrology8030128
  34. Nisansala, W. D. S., Abeysingha, N. S., Islam, A., & Bandara, A. M. K. R. (2020). Recent rainfall trend over Sri Lanka (1987–2017). International Journal of Climatology, 40(7), 3417–3435. https://doi.org/10.1002/joc.6405
  35. Ocampo, O. L. (2018). Modelación hidrológica y agronómica de los efectos del cambio y la variabilidad climática en la producción cafetera de Caldas [Tesis de Doctorado, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/63694
  36. Ocampo, O. L., Vélez Upegui, J. J., Marín Salazar, J. P., & Forero Hernández, A. T. (2020). Análisis de tendencias climáticas con RClimdex en el departamento de Caldas, Colombia. Scientia et Technica, 25(4), 595–603. https://doi.org/10.22517/23447214.22771
  37. Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1
  38. Sa’adi, Z., Shahid, S., Ismail, T., Chung, E.-S., & Wang, X.-J. (2019). Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 131(3), 263–277. https://doi.org/10.1007/s00703-017-0564-3
  39. Seenu, P. Z., & Jayakumar, K. V. (2021). Comparative study of innovative trend analysis technique with Mann-Kendall tests for extreme rainfall. Arabian Journal of Geosciences, 14(7), 536. https://doi.org/10.1007/s12517-021-06906-w
  40. Sen, Z. (2012). Innovative Trend Analysis Methodology. Journal of Hydrologic Engineering, 17(9), 1042–1046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556
  41. Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., & Zhou, B. (2021). Weather and climate extreme events in a changing climate. En V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, Ö. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1513-1766). Cambridge University Press. https://doi.org/10.1017/9781009157896.001
  42. Silva Dias, M. A. F., Dias, J., Carvalho, L. M. V., Freitas, E. D., & Silva Dias, P. L. (2013). Changes in extreme daily rainfall for São Paulo, Brazil. Climatic Change, 116(3), 705–722. https://doi.org/10.1007/s10584-012-0504-7
  43. Suárez-Cobian, P. (1959). El periodo diurno en las lluvias en los Andes ecuatoriales. Revista Académica Colombiana de Ciencias, 10, 327-335.
  44. Suárez, F. (1947). Caracteristica de las lluvias en una zona cafetera de Colombia y uso de los datos pluviográficos en el cálculo de obras de defensa de suelos. Boletín Técnico Cenicafé, 1(3), 1–38. http://hdl.handle.net/10778/667
  45. Suárez, F. (1975). Precipitaciones máximas de la zona caferera colombiana. Revista Cenicafé, 26(4), 172–186.
  46. Suárez, J. V. (1974). Régimen de las lluvias de la zona cafetera colombiana. Avances Técnicos Cenicafé, 34, 1-4. https://doi.org/10.38141/10779/0034
  47. Syafrina, A. H., Zalina, M. D., & Juneng, L. (2015). Historical trend of hourly extreme rainfall in Peninsular Malaysia. Theoretical and Applied Climatology, 120(1), 259–285. https://doi.org/10.1007/s00704-014-1145-8
  48. Trenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003). The Changing Character of Precipitation. Bulletin of the American Meteorological Society, 84(9), 1205–1218. https://doi.org/10.1175/BAMS-84-9-1205
  49. Trojer, H. (1958). Meteorología y climatología de la vertiente del Pacífico colombiano. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 10(40), 199–219. https://doi.org/10.18257/raccefyn.583
  50. Trojer, H. (1959). Fundamentos para una zonificación meteorológica y climatológica del trópico y especialmente de Colombia. Revista Cenicafé, 10(8), 289–373. http://hdl.handle.net/10778/719
  51. Wu, H., & Qian, H. (2017). Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. International Journal of Climatology, 37(5), 2582–2592. https://doi.org/10.1002/joc.4866
  52. Wu, M., Luo, Y., Chen, F., & Wong, W. K. (2019). Observed Link of Extreme Hourly Precipitation Changes to Urbanization over Coastal South China. Journal of Applied Meteorology and Climatology, 58(8), 1799-1819. https://doi.org/10.1175/JAMC-D-18-0284.1
  53. Zwiers, F. W., Alexander, L. V., Hegerl, G. C., Knutson, T. R., Kossin, J. P., Naveau, P., Nicholls, N., Schär, C., Seneviratne, S. I., & Zhang, X. (2013). Climate Extremes: Challenges in Estimating and Understanding Recent Changes in the Frequency and Intensity of Extreme Climate and Weather Events. En G. R. Asrar & J. W. Hurrell (Eds.), Climate Science for Serving Society: Research, Modeling and Prediction Priorities (pp. 339-389). Springer Netherlands. https://doi.org/10.1007/978-94-007-6692-1_13