Skip to main navigation menu Skip to main content Skip to site footer

Effect of roasting temperatures and time on the chemical composition of coffee Efecto de las temperaturas y tiempos de tueste en la composición química del café

How to Cite
Osorio Pérez , V., Pabón Usaquén , J. P. ., Gallego, C. P., & Echeverri-Giraldo , L. F. (2021). Effect of roasting temperatures and time on the chemical composition of coffee. Cenicafe Journal, 72(1), e72103. https://doi.org/10.38141/10778/72103

Dimensions
PlumX

Keywords
Tostación

calidad

temperatura

HPLC, UV-VIS

cromatografía de gases

roasting

quality

temperature

HPLC

UV-VIS

gas chromatography

torrefação

qualidade

temperatura

HPLC

UV-VIS

cromatografia gasosa

Sectión
Articles
Valentina Osorio Pérez
Jenny Paola Pabón Usaquén
Claudia Patricia Gallego
Luz Fanny Echeverri-Giraldo

Summary

During the roasting process, coffee is subjected to different temperatures and times, which produces diverse fundamental chemical changes in the structure of the compounds responsible for the aroma and characteristic flavor of coffee. In this research, the effect of the interaction between roasting temperature and time on the quality of six varieties of improved Coffea arabica was evaluated. Five roasting curves were generated, the base curve had an initial temperature of 200°C, two curves had temperature increases at 215°C and 230°C, and two curves had temperature decreases at 185°C and 170°C. The final roasting times were found between 8 and 12 minutes and were defined by the roasted bean color 55-65 on the AGTRON/SCA scale. Analytical techniques such as UV-VIS spectrophotometry, high performance liquid chromatography - HPLC and GC gas chromatography were used to determine the chemical composition of coffee: lipids, fatty acids, aliphatic carboxylic acids, alkaloids, total chlorogenic acids and sugars. The interaction of roasting time and variety had an effect on lipids, acetic, quinic, malic and citric acids, oleic and palmitic fatty acids, caffeine and trigonelline. Total chlorogenic acids showed no effect of the treatments and average values between 1.54% and 1.69% were obtained.

Valentina Osorio Pérez , Centro Nacional de Investigaciones de Café

Investigador Científico I. Disciplina de Calidad, Centro Nacional de Investigaciones de Café


Jenny Paola Pabón Usaquén , Centro Nacional de Investigaciones de Café

Asistente de Investigación. Disciplina de Calidad, Cenicafé.


Claudia Patricia Gallego, Centro Nacional de Investigaciones de Café

Asistente de Investigación. Disciplina de Calidad, Cenicafé.


Luz Fanny Echeverri-Giraldo , Centro Nacional de Investigaciones de Café

Asistente de Investigación. Disciplina de Calidad, Cenicafé.


References (See)

  1. Bauer, D., Abreu, J., Jordão, N., da Rosa, J. S., Freitas-Silva, O., & Teodoro, A. (2018). Effect of Roasting Levels and Drying Process of Coffea canephora on the Quality of Bioactive Compounds and Cytotoxicity. International Journal of Molecular Sciences, 19(11), 3407. https://doi.org/10.3390/ijms19113407
  2. Belitz, H.-D., Grosch, W., & Schieberle, P. (Eds.). (2009). Coffee, Tea, Cocoa. En Food Chemistry (pp. 938–970). Springer. https://doi.org/10.1007/978-3-540-69934-7_22
  3. Budryn, G., Nebesny, E., & Oracz, J. (2015). Correlation Between the Stability of Chlorogenic Acids, Antioxidant Activity and Acrylamide Content in Coffee Beans Roasted in Different Conditions. International Journal of Food Properties, 18(2), 290–302. https://doi.org/10.1080/10942912.2013.805769
  4. Chaves-Ulate, E., Esquivel-Rodríguez, P. (2019). Ácidos clorogénicos presentes en el café: capacidad antimicrobiana y antioxidante. Agronomía Mesoamericana, 30(1), 299–311. https://doi.org/10.15517/am.v30i1.32974
  5. Clarke, R. J., & Macrae, R. (Eds.). (1985). Coffee (Volume 1: Chemistry). Elsevier Springer, Dordrecht, https://doi.org/10.1007/978-94-009-4948-5
  6. Clarke, R. J., & Vitzthum, O. G. (Eds.). (2001). Coffee: Recent developments. Wiley-Blackwell. http://doi.org/10.1002/9780470690499
  7. Clifford, M. N., & Willson, K. C. (Eds.). (1985). Coffee: Botany, Biochemistry and Production of Beans and Beverage. Springer US. https://doi.org/10.1007/978-1-4615-6657-1
  8. De Luca, S., De Filippis, M., Bucci, R., Magrì, A. D., Magrì, A. L., & Marini, F. (2016). Characterization of the effects of different roasting conditions on coffee samples of different geographical origins by HPLC-DAD, NIR and chemometrics. Microchemical Journal, 129, 348–361. https://doi.org/10.1016/j.microc.2016.07.021
  9. De Maria, C. A. B., Trugo, L. C., Neto, F. R. A., Moreira, R. F. A., & Alviano, C. S. (1996). Composition of green coffee water-soluble fractions and identification of volatiles formed during roasting. Food Chemistry, 55(3), 203–207. https://doi.org/10.1016/0308-8146(95)00104-2
  10. Dias, R. C. E., & Benassi, M. D. T. (2015). Discrimination between Arabica and Robusta Coffees Using Hydrosoluble Compounds: Is the Efficiency of the Parameters Dependent on the Roast Degree? Beverages, 1(3), 127–139. https://doi.org/10.3390/beverages1030127
  11. Franca, A. S., Oliveira, L. S., Mendonça, J. C. F., & Silva, X. A. (2005). Physical and chemical attributes of defective crude and roasted coffee beans. Food Chemistry, 90(1–2), 89–94. https://doi.org/10.1016/j.foodchem.2004.03.028
  12. Gloess, A. N., Vietri, A., Wieland, F., Smrke, S., Schönbächler, B., López, J. A. S., Petrozzi, S., Bongers, S., Koziorowski, T., & Yeretzian, C. (2014). Evidence of different flavour formation dynamics by roasting coffee from different origins: On-line analysis with PTR-ToF-MS. International Journal of Mass Spectrometry, 365–366, 324–337. https://doi.org/10.1016/j.ijms.2014.02.010
  13. Illy, A., & Viani, R. (Eds.). (2005). Espresso coffee: The science of quality (2nd ed). Elsevier Academic. https://www.elsevier.com/books/espresso-coffee/illy/978-0-12-370371-2
  14. Nakilcio?lu-Ta?, E., & Ötle?, S. (2019). Physical characterization of Arabica ground coffee with different roasting degrees. Anais Da Academia Brasileira de Ciências, 91(2). e20180191. https://doi.org/10.1590/0001-3765201920180191
  15. Ortolá, M. D., Gutiérrez, C. L., Chiralt, A., & Fito, P. (1998). Kinetic study of lipid oxidation in roasted coffee. Food Science and Technology International, 4(1), 67–73. https://doi.org/10.1177/108201329800400109
  16. Puerta, G. I. (2011). Composición química de una taza de café. Avances Técnicos Cenicafé, 414, 1–12. http://hdl.handle.net/10778/340
  17. Puerta, G. I., & Echeverri, L. F. (2019). Relaciones entre las concentraciones de compuestos químicos del café y las temperaturas de torrefacción. Revista Cenicafé, 70(2), 67–80. http://hdl.handle.net/10778/4217
  18. Specialty Coffee Association. (2003). Cupping Protocols. Protocols & Best Practices. https://sca.coffee/research/protocols-best-practices
  19. Scholz?Böttcher, B. M., Ernst, L., & Maier, H. G. (1991). New stereoisomers of quinic acid and their lactones. Liebigs Annalen Der Chemie, 1991(10), 1029–1036. https://doi.org/10.1002/jlac.1991199101177
  20. Villarreal-Peña, D., Baena-Clavijo, L. M., & Posada-Suarez, H. E. (2012). Análisis de lípidos y ácidos grasos en café verde de líneas avanzadas de Coffea arabica cultivadas en Colombia. Revista Cenicafé, 63(1), 19–40. http://hdl.handle.net/10778/520
  21. Vitorino, M. D., Franca, A. S., Oliveira, L. S., & Andrade, F. M. (2001, junio 16). Variação de características físicas e químicas de café arábica durante a torra parte II: Características Químicas. En Consórcio Pesquisa Café e Desenvolvimento do Café (Organizador), II Simpósio de Pesquisa dos Cafés do Brasil, Vitória, Espírito Santo, Brasil. http://www.sbicafe.ufv.br/handle/123456789/1244
  22. Zanin, R., Corso, M. P., Kitzberger, C. S. G., dos Santos Scholz, M. B., & Benassi, M. de T. (2016). Good cup quality roasted coffees show wide variation in chlorogenic acids content. LWT - Food Science and Technology, 74, 480–483. https://doi.org/10.1016/j.lwt.2016.08.012