Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación del efecto de la aplicación de una fuente carbonatada en plantas de café en almácigo Evaluation of the effect of the application of a carbonated source on coffee nurseries

Cómo citar
Flechas-Bejarano, N., & Acuña-Zornosa, J. R. (2022). Evaluación del efecto de la aplicación de una fuente carbonatada en plantas de café en almácigo. Revista Cenicafé, 73(1), e73104. https://doi.org/10.38141/10778/73104

Dimensions
PlumX

Palabras clave
Biomasa

fenología

intercambio gaseoso

Fotosistema II

nutrición mineral

Biomass

phenology

gas exchange

Photosystem II

mineral nutrition

Biomassa

fenologia

troca de gases

sistema fotográfico II

nutrição mineral

Sección
Artículos
Términos de licencia (Ver)
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Natalia Flechas-Bejarano
José Ricardo Acuña-Zornosa

Resumen

La aplicación controlada de CO2 y fertilizantes a través de partículas de liberación lenta, ha sido una estrategia innovadora y promisoria de fertilización para los cultivos, pues permite la liberación controlada de CO2 en el mesófilo de las hojas vía estomas o epidermis. Se evalúo el efecto de la aplicación de un producto enriquecido con CO2 en tres concentraciones diferenciales con base en la dosis óptima (TTO1-50%, TTO2-100% y TTO3-200%) en el contenido de biomasa seca, intercambio gaseoso, la Eficiencia real del Fotosistema II y la nutrición mineral en las plantas de café. Se asperjaron las plantas con una frecuencia de 15 días desde la emergencia del primer par de hojas verdaderas (30 DDS- BBHC12) hasta los seis meses (180 DDS-BBCH19) en almácigo estándar. Se cuantificó la biomasa total de 15 plantas por cada tratamiento y el control a los 180 DDS. No hubo evidencia estadística de diferencias significativas en el contenido de biomasa total (gl=3, 56; F= 0,669; p=0,575, ?=0,05). El intercambio gaseoso y la PSII fueron influenciados principalmente por la fenología, más que por la aplicación de los tratamientos (conductancia estomática- gs: p=2,85 x 10-5, tasa de asimilación neta- A: p=9,01 x 10-16, transpiración- E: p=8,63 x 10-4 y PSII: p=1,93 x 10-19). El contenido de macro y micronutrientes foliares del café fueron afectados tras la aplicación del CO2 carbonatado. La aplicación del producto carbonatado no aumentó el contenido de biomasa seca total de las plantas de café durante su establecimiento en almácigo estándar.

Natalia Flechas-Bejarano, Centro Nacional de Investigaciones de Café

Asistente de Investigación, Disciplina de Fisiología Vegetal, Cenicafé.


José Ricardo Acuña-Zornosa, Centro Nacional de Investigaciones de Café

Investigador Científico III, Disciplina de Fisiología Vegetal, Cenicafé.


Referencias (Ver)

  1. Ahmed, M., & Ahmad, S. (2019). Carbon Dioxide Enrichment and Crop Productivity. En M. Hasanuzzaman (Ed.), Agronomic Crops (pp. 31–46). Springer Singapore. https://doi.org/10.1007/978-981-32-9783-8_3
  2. Ainsworth, E. A., & Long, S. P. (2021). 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology, 27(1), 27–49. https://doi.org/10.1111/gcb.15375
  3. Albert, L. P., Restrepo-Coupe, N., Smith, M. N., Wu, J., Chavana-Bryant, C., Prohaska, N., Taylor, T. C., Martins, G. A., Ciais, P., Mao, J., Arain, M. A., Li, W., Shi, X., Ricciuto, D. M., Huxman, T. E., McMahon, S. M., & Saleska, S. R. (2019). Cryptic phenology in plants: Case studies, implications, and recommendations. Global Change Biology, 25(11), 3591-3608. https://doi.org/10.1111/gcb.14759
  4. Arcila-Pulgarin, J., Buhr, L., Bleiholder, H., Hack, H., Meier, U., & Wicke, H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology, 141(1), 19–27. https://doi.org/10.1111/j.1744-7348.2002.tb00191.x
  5. Avila, R. T., Cardoso, A. A., de Almeida, W. L., Costa, L. C., Machado, K. L. G., Barbosa, M. L., de Souza, R. P. B., Oliveira, L. A., Batista, D. S., Martins, S. C. V., Ramalho, J. D. C., & DaMatta, F. M. (2020). Coffee plants respond to drought and elevated [CO2] through changes in stomatal function, plant hydraulic conductance, and aquaporin expression. Environmental and Experimental Botany, 177, 104148. https://doi.org/10.1016/j.envexpbot.2020.104148
  6. Avila, R. T., de Almeida, W. L., Costa, L. C., Machado, K. L. G., Barbosa, M. L., de Souza, R. P. B., Martino, P. B., Juárez, M. A. T., Marçal, D. M. S., Martins, S. C. V., Ramalho, J. D. C., & DaMatta, F. M. (2020). Elevated air [CO2] improves photosynthetic performance and alters biomass accumulation and partitioning in drought-stressed coffee plants. Environmental and Experimental Botany, 177, 104137. https://doi.org/10.1016/j.envexpbot.2020.104137
  7. Baker, N. R. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59(1), 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
  8. Catarino, I. C., Monteiro, G. B., Ferreira, M. J., Torres, L., Domingues, D. S., Centeno, D. C., Lobo, A. K. M., & Silva, E. A. (2021). Elevated [CO2] Mitigates Drought Effects and Increases Leaf 5-O-Caffeoylquinic Acid and Caffeine Concentrations During the Early Growth of Coffea Arabica Plants. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.676207
  9. Chen, J.-H., Chen, S.-T., He, N.-Y., Wang, Q.-L., Zhao, Y., Gao, W., & Guo, F.-Q. (2020). Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nature Plants, 6(5), 570–580. https://doi.org/10.1038/s41477-020-0629-z
  10. Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 15(1), 15–22. https://doi.org/10.1007/s10311-016-0600-4
  11. DaMatta, F. M., Avila, R. T., Cardoso, A. A., Martins, S. C. V., & Ramalho, J. C. (2018). Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. Journal of Agricultural and Food Chemistry, 66(21), 5264–5274. https://doi.org/10.1021/acs.jafc.7b04537
  12. Dong, J., Gruda, N., Lam, S. K., Li, X., & Duan, Z. (2018). Effects of Elevated CO2 on Nutritional Quality of Vegetables: A Review. Frontiers in Plant Science, 9, 924. https://doi.org/10.3389/fpls.2018.00924
  13. Farfán, F., Serna, C. A., & Sánchez, P. M. (2015). Almácigos para caficultura orgánica: alternativas y costos. Avances Técnicos Cenicafé, 452, 1–8. http://hdl.handle.net/10778/556
  14. Gaitán, A., Villegas, C., Rivillas, C. A., Hincapié, E., & Arcila, J. (2011). Almácigos de café: Calidad fitosanitaria manejo y siembra en el campo. Avances Técnicos Cenicafé, 404, 1–8. http://hdl.handle.net/10778/350
  15. G?owacka, K., Kromdijk, J., Kucera, K., Xie, J., Cavanagh, A. P., Leonelli, L., Leakey, A. D. B., Ort, D. R., Niyogi, K. K., & Long, S. P. (2018). Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nature Communications, 9(1), 868. https://doi.org/10.1038/s41467-018-03231-x
  16. Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Møller, I. S., & White, P. (2012). Chapter 6—Functions of Macronutrients. En P. Marschner (Ed.), Marschner’s Mineral Nutrition of Higher Plants (Third Edition) (pp. 135–189). Academic Press. https://doi.org/10.1016/B978-0-12-384905-2.00006-6
  17. Kassambara, A. (2020). ggpubr: «ggplot2» Based Publication Ready Plots (0.4.0) [Computer software]. https://CRAN.R-project.org/package=ggpubr
  18. Kassambara, A. (2021). rstatix: Pipe-Friendly Framework for Basic Statistical Tests (0.7.0) [Computer software]. https://CRAN.R-project.org/package=rstatix
  19. Leyton Araújo, D. A., & Manrique Castro, D. C. (2019). Evaluación del efecto de acondicionadores foliar y edáfico en almácigos de café en la finca La Sultana vereda Urubamba—Municipio de Timbío—Cauca [Tesis de pregrado, Universidad del Cauca]. http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1635
  20. Marques, I., Fernandes, I., Paulo, O. S., Lidon, F. C., DaMatta, F. M., Ramalho, J. C., & Ribeiro-Barros, A. I. (2021). A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO2 Revealed Different Responses in the Polyploid Coffea arabica and Its Diploid Progenitor C. canephora. International Journal of Molecular Sciences, 22(6), 3125. https://doi.org/10.3390/ijms22063125
  21. Martins, M. Q., Rodrigues, W. P., Fortunato, A. S., Leitão, A. E., Rodrigues, A. P., Pais, I. P., Martins, L. D., Silva, M. J., Reboredo, F. H., Partelli, F. L., Campostrini, E., Tomaz, M. A., Scotti-Campos, P., Ribeiro-Barros, A. I., Lidon, F. J. C., DaMatta, F. M., & Ramalho, J. C. (2016). Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00947
  22. Norby, R. J., & Zak, D. R. (2011). Ecological Lessons from Free-Air CO2 Enrichment (FACE) Experiments. Annual Review of Ecology, Evolution, and Systematics, 42(1), 181–203. https://doi.org/10.1146/annurev-ecolsys-102209-144647
  23. Perez, T. M., Socha, A., Tserej, O., & Feeley, K. J. (2021). Photosystem II heat tolerances characterize thermal generalists and the upper limit of carbon assimilation. Plant, Cell & Environment, 44(7), 2321–2330. https://doi.org/10.1111/pce.13990
  24. Qi, X., & Torii, K. U. (2018). Hormonal and environmental signals guiding stomatal development. BMC Biology, 16(1), 21. https://doi.org/10.1186/s12915-018-0488-5
  25. Rakocevic, M., Braga, K. S. M., Batista, E. R., Maia, A. H. N., Scholz, M. B. S., & Filizola, H. F. (2020). The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regulation, 91(2), 305–316. https://doi.org/10.1007/s10725-020-00607-2
  26. Rakocevic, M., Ribeiro, R. V., Ribeiro Marchiori, P. E., Filizola, H. F., & Batista, E. R. (2018). Structural and functional changes in coffee trees after 4 years under free air CO2 enrichment. Annals of Botany, 121(5), 1065–1078. https://doi.org/10.1093/aob/mcy011
  27. Rizopoulou, S., & Nunes, M. A. (1981). Some Adaptative Photosynthetic Characteristics of a Sun Plant (Ceratonia Siliqua ) and a Shade Plant (Coffea Arabica). En N. S. Margaris & H. A. Mooney (Eds.), Components of productivity of Mediterranean-climate regions Basic and applied aspects (Vol. 4, pp. 85–89). Springer Netherlands. https://doi.org/10.1007/978-94-009-8683-1_13
  28. Rodrigues, W. P. (2017). Effect of high temperatures and CO2 concentration on physiological, biochemical and growth traits in Coffea sp.: Aspects related to the single leaf and whole canopy [Tesis de Doctorado, Universidade Estadual do Norte Fluminense]. http://www.sbicafe.ufv.br/handle/123456789/12225
  29. RStudio Team. (2020). RStudio: Integrated Development for R. RStudio, PBC. http://www.rstudio.com/
  30. Sadeghian, S. (2020). Análisis foliar: Una guía para evaluar el estado nutricional del café. Avances Técnicos Cenicafé, 515, 1–4. https://doi.org/10.38141/10779/0515
  31. Sadeghian, S., & Ospina, C. (2021). Manejo nutricional de café durante la etapa de almácigo. Avances Técnicos Cenicafé, 532, 1–8. https://doi.org/10.38141/10779/0532
  32. Sanches, R. F. E., da Cruz Centeno, D., Braga, M. R., & da Silva, E. A. (2020). Impact of high atmospheric CO2 concentrations on the seasonality of water-related processes, gas exchange, and carbohydrate metabolism in coffee trees under field conditions. Climatic Change, 162(3), 1231–1248. https://doi.org/10.1007/s10584-020-02741-2
  33. Sardans, J., Grau, O., Chen, H. Y. H., Janssens, I. A., Ciais, P., Piao, S., & Peñuelas, J. (2017). Changes in nutrient concentrations of leaves and roots in response to global change factors. Global Change Biology, 23(9), 3849–3856. https://doi.org/10.1111/gcb.13721
  34. Su, Y., Ashworth, V., Kim, C., Adeleye, A. S., Rolshausen, P., Roper, C., White, J., & Jassby, D. (2019). Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis. Environmental Science: Nano, 6(8), 2311-2331. https://doi.org/10.1039/C9EN00461K
  35. Thompson, M., Gamage, D., Hirotsu, N., Martin, A., & Seneweera, S. (2017). Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk. Frontiers in Physiology, 8, 578. https://doi.org/10.3389/fphys.2017.00578
  36. Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., Rehman, H. ur, Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment, 721, 137778. https://doi.org/10.1016/j.scitotenv.2020.137778
  37. Van de Peer, Y., Ashman, T.-L., Soltis, P. S., & Soltis, D. E. (2021). Polyploidy: An evolutionary and ecological force in stressful times. The Plant Cell, 33(1), 11–26. https://doi.org/10.1093/plcell/koaa015
  38. Vega, F. E., Ziska, L. H., Simpkins, A., Infante, F., Davis, A. P., Rivera, J. A., Barnaby, J. Y., & Wolf, J. (2020). Early growth phase and caffeine content response to recent and projected increases in atmospheric carbon dioxide in coffee (Coffea arabica and C. canephora). Scientific Reports, 10(1), 5875. https://doi.org/10.1038/s41598-020-62818-x
  39. Verhage, F. Y. F., Anten, N. P. R., & Sentelhas, P. C. (2017). Carbon dioxide fertilization offsets negative impacts of climate change on Arabica coffee yield in Brazil. Climatic Change, 144(4), 671–685. https://doi.org/10.1007/s10584-017-2068-z
  40. Wang, Y., Zhang, Y.-J., Han, J.-M., Li, C.-H., Wang, R.-J., Zhang, Y.-L., & Jia, X. (2019). Improve Plant Photosynthesis by a New Slow-Release Carbon Dioxide Gas Fertilizer. ACS Omega, 4(6), 10354-10361. https://doi.org/10.1021/acsomega.8b03086
  41. Wei, Z., Du, T., Li, X., Fang, L., & Liu, F. (2018). Interactive Effects of Elevated CO2 and N Fertilization on Yield and Quality of Tomato Grown Under Reduced Irrigation Regimes. Frontiers in Plant Science, 9, 328. https://doi.org/10.3389/fpls.2018.00328
  42. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
  43. Ya, Z., YongPing, Z., ShiWei, Z., Pan, Y., & Meng, Z. (2018). Effects of combined application of slow-release fertilizer and foliage fertilizer on growth, development and photosynthetic characteristics of tobacco plants. Acta Agriculturae Jiangxi, 30(6), 67–70.
  44. Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289, 110270. https://doi.org/10.1016/j.plantsci.2019.110270