Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Conductancia hidráulica foliar en accesiones de la colección núcleo de Coffea sp. y progenies de la variedad Cenicafé 1. Leaf hydraulic conductance in accessions from the core collection and Progenies of the variety Cenicafé 1

Cómo citar
Acuña-Zornosa, J. R., Camilo-Reyes, C. D., Unigarro, C. A., & Flechas-Bejarano, N. (2023). Conductancia hidráulica foliar en accesiones de la colección núcleo de Coffea sp. y progenies de la variedad Cenicafé 1. Revista Cenicafé, 74(2), e74203. https://doi.org/10.38141/10778/74203

Dimensions
PlumX

Palabras clave
conductancia vegetal

diversidad genética

flujo evaporativo

germoplasma de café

Cenicafé

Colombia

plant conductance

genetic diversity

evaporative flux

coffee germplasm

Cenicafé

Colombia

condutância da planta

diversidade genética

fluxo evaporativo

germoplasma de café

Cenicafé

Colombia

Sección
Artículos
Términos de licencia (Ver)
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

José Ricardo Acuña-Zornosa
Cristian David Camilo-Reyes
Carlos Andres Unigarro
Natalia Flechas-Bejarano

Resumen

Estudios con Coffea arabica L. cultivado a la sombra y a plena exposición solar han demostrado que la conductancia hidráulica de la hoja de café (KF) es el principal impedimento para maximizar el intercambio gaseoso en las hojas y su tasa fotosintética. Diversidad de estudios evolutivos en plantas superiores validan la correlación positiva entre la conductividad hidráulica foliar (KF) y la fotosíntesis. La colección núcleo de germoplasma de Coffea sp. de Cenicafé representa, en gran medida, la variabilidad genética y fenotípica de la colección colombiana de café, sin embargo, las diferencias entre las accesiones en términos de conductancia hidráulica foliar son desconocidas; por lo tanto, aun no es posible su uso para cruzamientos enfocados al desarrollo de progenies de café con mayores valores de conductancia. En este proyecto se midió la conductancia foliar de 42 accesiones de la colección núcleo de germoplasma de Coffea sp. y ocho progenies de la variedad Cenicafé 1, usando el método del flujo evaporativo. Los valores de KF reportados fueron estadísticamente significativos, demostrando que hubo agrupamiento entre las accesiones. Las accesiones CCC16, CCC50, CCC82, CCC176, CCC427, CCC1011, CCC1045 y CCC1131 fueron clasificadas dentro del grupo de conductancia foliar muy alta. Las KF de las ocho líneas de la variedad Cenicafé 1 se clasificaron dentro del grupo de conductancia muy alta (25%), alta (37,5%) y moderada (37,5%). Ninguna de las progenies de la variedad Cenicafé 1 fue clasificada en el grupo de conductancia baja, lo cual es muy relevante para el desempeño fotosintético de esta variedad.

José Ricardo Acuña-Zornosa, Centro Nacional de Investigaciones de Café

Investigador Científico III, Disciplina de Fisiología, Cenicafé

Cristian David Camilo-Reyes, Centro Nacional de Investigaciones de Café

Investigador Científico I hasta 31 mayo de 2022. Disciplina de Fisiología Vegetal, Cenicafé

Carlos Andres Unigarro, Centro Nacional de Investigaciones de Café

Investigador Científico II, Disciplina de Fisiología Vegetal, Cenicafé

Natalia Flechas-Bejarano, Centro Nacional de Investigaciones de Café

Asistente de Investigación, Disciplina de Fisiología Vegetal, Cenicafé

Referencias (Ver)

  1. Brodribb, T. J., Holbrook, N. M., Zwieniecki, M. A., & Palma, B. (2005). Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima. New Phytologist, 165(3), 839–846. https://doi.org/10.1111/j.1469-8137.2004.01259.x
  2. Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology, 144(4), 1890–1898. https://doi.org/10.1104/pp.107.101352
  3. Brodribb, T. J., & Buckley, T. N. (2018). Leaf Water Transport: A Core System in the Evolution and Physiology of Photosynthesis. En W. W. Adams III & I. Terashima (Eds.), The Leaf: A Platform for Performing Photosynthesis (pp. 81–96). Springer International Publishing. https://doi.org/10.1007/978-3-319-93594-2_4
  4. Ceulemans, R., & Saugier, B. (1991). Photosynthesis. En A. S. Raghavendra (Ed.), Physiology of trees (pp. 21–50). Wiley.
  5. Centro Nacional de Investigaciones de Café. (2017). Informe Anual Cenicafé 2017. https://doi.org/10.38141/10783/2017
  6. Centro Nacional de Investigaciones de Café. (2018). Informe Anual Cenicafé 2018. https://doi.org/10.38141/10783/2018
  7. Centro Nacional de Investigaciones de Café. (2019). Informe Anual Cenicafé 2019. https://doi.org/10.38141/10783/2019
  8. Centro Nacional de Investigaciones de Café. (2020). Informe Anual Cenicafé 2020. https://doi.org/10.38141/10783/2020
  9. Meyer, F. G., Fernie, L. M., Narasimhaswamy, R. L., Monaco, L. C., & Greathead, D. J. (1968). FAO Coffee Mission to Ethiopia 1964-1965. FAO.
  10. Franck, N., Vaast, P., Genard, M., & Dauzat, J. (2006). Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology, 26(4), 517–525. https://doi.org/10.1093/treephys/26.4.517
  11. Gascó, A., Nardini, A., & Salleo, S. (2004). Resistance to water flow through leaves of Coffea arabica is dominated by extra-vascular tissues. Functional Plant Biology, 31(12), 1161. https://doi.org/10.1071/FP04032
  12. Guillaumet, J. L., & Hallé, F. (1978). Echantillonnage du matériel Coffea arabica récolté en Ethiopie. En A. Charrier (Ed.), Etude de la structure et de la variabilité génétique des caféiers: Résultats des études et des expérimentations réalisées au Cameroun, en Cote d’Ivoire et à Madagascar sur l’espèce Coffea arabica L. collectée en Ethiopie par une mission ORSTOM en 1966- Bulletin IFCC 14 (pp. 13–18). IFCC.
  13. Kumar, D., & Tieszen, L. L. (1980). Photosynthesis in Coffea arabica. I. Effects of Light and Temperature. Experimental Agriculture, 16(1), 13–19. https://doi.org/10.1017/S0014479700010656
  14. Lovisolo, C., & Tramontini, S. (2010). Methods for Assessment of Hydraulic Conductance and Embolism Extent in Grapevine Organs. En S. Delrot, H. Medrano, E. Or, L. Bavaresco, & S. Grando (Eds.), Methodologies and Results in Grapevine Research (pp. 71–85). Springer Netherlands. https://doi.org/10.1007/978-90-481-9283-0_6
  15. Machado, J. A., Rodrigues, W. P., Baroni, D. F., Pireda, S., Campbell, G., de Souza, G. A. R., Verdin Filho, A. C., Arantes, S. D., de Oliveira Arantes, L., da Cunha, M., Gambetta, G. A., Rakocevic, M., Ramalho, J. C., & Campostrini, E. (2021). Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. Journal of Plant Physiology, 258–259, 153355. https://doi.org/10.1016/j.jplph.2020.153355
  16. Martins, S. C. V., Galmés, J., Cavatte, P. C., Pereira, L. F., Ventrella, M. C., & DaMatta, F. M. (2014). Understanding the Low Photosynthetic Rates of Sun and Shade Coffee Leaves: Bridging the Gap on the Relative Roles of Hydraulic, Diffusive and Biochemical Constraints to Photosynthesis. PLOS ONE, 9(4), e95571. https://doi.org/10.1371/journal.pone.0095571
  17. Martins, S. C. V., Sanglard, M. L., Morais, L. E., Menezes-Silva, P. E., Mauri, R., Avila, R. T., Vital, C. E., Cardoso, A. A., & DaMatta, F. M. (2019). How do coffee trees deal with severe natural droughts? An analysis of hydraulic, diffusive and biochemical components at the leaf level. Trees, 33(6), 1679–1693. https://doi.org/10.1007/s00468-019-01889-4
  18. Mauri, R., Cardoso, A. A., da Silva, M. M., Oliveira, L. A., Avila, R. T., Martins, S. C. V., & DaMatta, F. M. (2020). Leaf hydraulic properties are decoupled from leaf area across coffee species. Trees, 34(6), 1507–1514. https://doi.org/10.1007/s00468-020-01983-y
  19. Mosquera, L.P., Riaño, N. M., Arcila, J., & Ponce, C. A. (1999). Fotosíntesis, respiración y fotorrespiración en hojas de cafe Coffea sp. Revista Cenicafé, 50(3), 215–221.
  20. Nardini, A., Õunapuu-Pikas, E., Savi, T., Nardini, A., Õunapuu-Pikas, E., & Savi, T. (2014). When smaller is better: Leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four Coffea arabica genotypes. Functional Plant Biology, 41(9), 972–982. https://doi.org/10.1071/FP13302
  21. R Software Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing (3.6.1.) [Computer software]. https://www.r-project.org
  22. Sack, L., & Scoffoni, C. (2012). Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM). Journal of Visualized Experiments, 70, 4179. https://doi.org/10.3791/4179
  23. Sack, L., Ball, M. C., Brodersen, C., Davis, S. D., Des Marais, D. L., Donovan, L. A., Givnish, T. J., Hacke, U. G., Huxman, T., Jansen, S., Jacobsen, A. L., Johnson, D. M., Koch, G. W., Maurel, C., McCulloh, K. A., McDowell, N. G., McElrone, A., Meinzer, F. C., Melcher, P. J., … Holbrook, N. M. (2016). Plant hydraulics as a central hub integrating plant and ecosystem function: Meeting report for ‘Emerging Frontiers in Plant Hydraulics’ (Washington, DC, May 2015). Plant, Cell & Environment, 39(9), 2085–2094. https://doi.org/10.1111/pce.12732
  24. Scoffoni, C., Chatelet, D. S., Pasquet-kok, J., Rawls, M., Donoghue, M. J., Edwards, E. J., & Sack, L. (2016). Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2(6), 1–8. https://doi.org/10.1038/nplants.2016.72
  25. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
  26. Silva, E. A., DaMatta, F. M., Ducatti, C., Regazzi, A. J., & Barros, R. S. (2004). Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Research, 89(2), 349–357. https://doi.org/10.1016/j.fcr.2004.02.010
  27. Tatagiba, S. D., Pezzopane, J. E. M., Reis, E. F. (2010). Crescimento vegetativo de mudas de café arábica (Coffea arabica L.) submetidas a diferentes níveis de sombreamento. Coffee Science, 5(3), 251–261. http://www.sbicafe.ufv.br:80/handle/123456789/5413
  28. Wang, X., Zhao, J., Huang, J., Peng, S., & Xiong, D. (2022). Evaporative flux method of leaf hydraulic conductance estimation: Sources of uncertainty and reporting format recommendation. Plant Methods, 18(1), 63. https://doi.org/10.1186/s13007-022-00888-w
  29. Wu, T., Tissue, D. T., Li, X., Liu, S., Chu, G., Zhou, G., Li, Y., Zheng, M., Meng, Z., & Liu, J. (2020). Long?term effects of 7?year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species. Global Change Biology, 26(12), 7144–7157. https://doi.org/10.1111/gcb.15355
  30. Xiong, D., & Nadal, M. (2020). Linking water relations and hydraulics with photosynthesis. The Plant Journal, 101(4), 800–815. https://doi.org/10.1111/tpj.14595
  31. Zapata, P. C., Andrade, H. J., & Nieto Abril, Z. K. (2017). Comportamiento ecofisiológico del cafeto (Coffea arabica L.) cv. Castillo en sistemas agroforestales de Tibacuy, Cundinamarca. Revista U.D.C.A Actualidad & Divulgación Científica, 20(1), 61–70. https://doi.org/10.31910/rudca.v20.n1.2017.63

Artículos más leídos del mismo autor/a