Ir para o menu de navegação principal Ir para o conteúdo principal Ir para o rodapé

Condutância hidráulica da folha em acessos da coleção principal de Coffea sp. e progênies da variedade Cenicafé 1.

Como Citar
Acuña-Zornosa, J. R., Camilo-Reyes, C. D., Unigarro, C. A., & Flechas-Bejarano, N. (2023). Condutância hidráulica da folha em acessos da coleção principal de Coffea sp. e progênies da variedade Cenicafé 1. Cenicafé Journal, 74(2), e74203. https://doi.org/10.38141/10778/74203

Dimensions
PlumX

Palavras chave
conductancia vegetal

diversidad genética

flujo evaporativo

germoplasma de café

Cenicafé

Colombia

plant conductance

genetic diversity

evaporative flux

coffee germplasm

Cenicafé

Colombia

condutância da planta

diversidade genética

fluxo evaporativo

germoplasma de café

Cenicafé

Colombia

##articleSummary.lastnum##
seção
Artigos
Termos de licença (See)
Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

José Ricardo Acuña-Zornosa
Cristian David Camilo-Reyes
Carlos Andres Unigarro
Natalia Flechas-Bejarano

Resumo

Estudos com o Coffea arabica L. cultivado à sombra e a pleno sol mostraram que a condutância hidráulica da folha do café (KF) é o principal impedimento para maximizar as trocas gasosas e a taxa fotossintética da folha. Vários estudos evolutivos em plantas superiores validam a correlação positiva entre a condutância hidráulica da folha (KF) e a fotossíntese. A coleção principal de germoplasma de Coffea sp. do Cenicafé representa, em grande parte, a variabilidade genética e fenotípica da coleção de café colombiana; no entanto, as diferenças entre os acessos em termos de condutância hidráulica da folha são desconhecidas; portanto, ainda não é possível usá-las para cruzamentos destinados a desenvolver progênies de café com valores mais altos de condutância. Neste projeto, a condutância foliar de 42 acessos da coleção central de germoplasma de Coffea sp. e oito progênies da variedade Cenicafé 1 foram medidas pelo método do fluxo evaporativo. Os valores de KF relatados foram estatisticamente significativos, mostrando que houve agrupamento entre os acessos. Os acessos CCC16, CCC50, CCC82, CCC176, CCC427, CCC1011, CCC1045 e CCC1131 foram classificados no grupo de condutância foliar muito alta. O KF das oito linhas do Cenicafé 1 foi classificado nos grupos de condutância muito alta (25%), alta (37,5%) e moderada (37,5%). Nenhuma das progênies do Cenicafé 1 foi classificada no grupo de baixa condutância, o que é muito relevante para o desempenho fotossintético dessa variedade.

José Ricardo Acuña-Zornosa, Centro Nacional de Investigaciones de Café

Investigador Científico III, Disciplina de Fisiología, Cenicafé

Cristian David Camilo-Reyes, Centro Nacional de Investigaciones de Café

Investigador Científico I hasta 31 mayo de 2022. Disciplina de Fisiología Vegetal, Cenicafé

Carlos Andres Unigarro, Centro Nacional de Investigaciones de Café

Investigador Científico II, Disciplina de Fisiología Vegetal, Cenicafé

Natalia Flechas-Bejarano, Centro Nacional de Investigaciones de Café

Asistente de Investigación, Disciplina de Fisiología Vegetal, Cenicafé

Referências (See)

  1. Brodribb, T. J., Holbrook, N. M., Zwieniecki, M. A., & Palma, B. (2005). Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima. New Phytologist, 165(3), 839–846. https://doi.org/10.1111/j.1469-8137.2004.01259.x
  2. Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology, 144(4), 1890–1898. https://doi.org/10.1104/pp.107.101352
  3. Brodribb, T. J., & Buckley, T. N. (2018). Leaf Water Transport: A Core System in the Evolution and Physiology of Photosynthesis. En W. W. Adams III & I. Terashima (Eds.), The Leaf: A Platform for Performing Photosynthesis (pp. 81–96). Springer International Publishing. https://doi.org/10.1007/978-3-319-93594-2_4
  4. Ceulemans, R., & Saugier, B. (1991). Photosynthesis. En A. S. Raghavendra (Ed.), Physiology of trees (pp. 21–50). Wiley.
  5. Centro Nacional de Investigaciones de Café. (2017). Informe Anual Cenicafé 2017. https://doi.org/10.38141/10783/2017
  6. Centro Nacional de Investigaciones de Café. (2018). Informe Anual Cenicafé 2018. https://doi.org/10.38141/10783/2018
  7. Centro Nacional de Investigaciones de Café. (2019). Informe Anual Cenicafé 2019. https://doi.org/10.38141/10783/2019
  8. Centro Nacional de Investigaciones de Café. (2020). Informe Anual Cenicafé 2020. https://doi.org/10.38141/10783/2020
  9. Meyer, F. G., Fernie, L. M., Narasimhaswamy, R. L., Monaco, L. C., & Greathead, D. J. (1968). FAO Coffee Mission to Ethiopia 1964-1965. FAO.
  10. Franck, N., Vaast, P., Genard, M., & Dauzat, J. (2006). Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology, 26(4), 517–525. https://doi.org/10.1093/treephys/26.4.517
  11. Gascó, A., Nardini, A., & Salleo, S. (2004). Resistance to water flow through leaves of Coffea arabica is dominated by extra-vascular tissues. Functional Plant Biology, 31(12), 1161. https://doi.org/10.1071/FP04032
  12. Guillaumet, J. L., & Hallé, F. (1978). Echantillonnage du matériel Coffea arabica récolté en Ethiopie. En A. Charrier (Ed.), Etude de la structure et de la variabilité génétique des caféiers: Résultats des études et des expérimentations réalisées au Cameroun, en Cote d’Ivoire et à Madagascar sur l’espèce Coffea arabica L. collectée en Ethiopie par une mission ORSTOM en 1966- Bulletin IFCC 14 (pp. 13–18). IFCC.
  13. Kumar, D., & Tieszen, L. L. (1980). Photosynthesis in Coffea arabica. I. Effects of Light and Temperature. Experimental Agriculture, 16(1), 13–19. https://doi.org/10.1017/S0014479700010656
  14. Lovisolo, C., & Tramontini, S. (2010). Methods for Assessment of Hydraulic Conductance and Embolism Extent in Grapevine Organs. En S. Delrot, H. Medrano, E. Or, L. Bavaresco, & S. Grando (Eds.), Methodologies and Results in Grapevine Research (pp. 71–85). Springer Netherlands. https://doi.org/10.1007/978-90-481-9283-0_6
  15. Machado, J. A., Rodrigues, W. P., Baroni, D. F., Pireda, S., Campbell, G., de Souza, G. A. R., Verdin Filho, A. C., Arantes, S. D., de Oliveira Arantes, L., da Cunha, M., Gambetta, G. A., Rakocevic, M., Ramalho, J. C., & Campostrini, E. (2021). Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. Journal of Plant Physiology, 258–259, 153355. https://doi.org/10.1016/j.jplph.2020.153355
  16. Martins, S. C. V., Galmés, J., Cavatte, P. C., Pereira, L. F., Ventrella, M. C., & DaMatta, F. M. (2014). Understanding the Low Photosynthetic Rates of Sun and Shade Coffee Leaves: Bridging the Gap on the Relative Roles of Hydraulic, Diffusive and Biochemical Constraints to Photosynthesis. PLOS ONE, 9(4), e95571. https://doi.org/10.1371/journal.pone.0095571
  17. Martins, S. C. V., Sanglard, M. L., Morais, L. E., Menezes-Silva, P. E., Mauri, R., Avila, R. T., Vital, C. E., Cardoso, A. A., & DaMatta, F. M. (2019). How do coffee trees deal with severe natural droughts? An analysis of hydraulic, diffusive and biochemical components at the leaf level. Trees, 33(6), 1679–1693. https://doi.org/10.1007/s00468-019-01889-4
  18. Mauri, R., Cardoso, A. A., da Silva, M. M., Oliveira, L. A., Avila, R. T., Martins, S. C. V., & DaMatta, F. M. (2020). Leaf hydraulic properties are decoupled from leaf area across coffee species. Trees, 34(6), 1507–1514. https://doi.org/10.1007/s00468-020-01983-y
  19. Mosquera, L.P., Riaño, N. M., Arcila, J., & Ponce, C. A. (1999). Fotosíntesis, respiración y fotorrespiración en hojas de cafe Coffea sp. Revista Cenicafé, 50(3), 215–221.
  20. Nardini, A., Õunapuu-Pikas, E., Savi, T., Nardini, A., Õunapuu-Pikas, E., & Savi, T. (2014). When smaller is better: Leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four Coffea arabica genotypes. Functional Plant Biology, 41(9), 972–982. https://doi.org/10.1071/FP13302
  21. R Software Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing (3.6.1.) [Computer software]. https://www.r-project.org
  22. Sack, L., & Scoffoni, C. (2012). Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM). Journal of Visualized Experiments, 70, 4179. https://doi.org/10.3791/4179
  23. Sack, L., Ball, M. C., Brodersen, C., Davis, S. D., Des Marais, D. L., Donovan, L. A., Givnish, T. J., Hacke, U. G., Huxman, T., Jansen, S., Jacobsen, A. L., Johnson, D. M., Koch, G. W., Maurel, C., McCulloh, K. A., McDowell, N. G., McElrone, A., Meinzer, F. C., Melcher, P. J., … Holbrook, N. M. (2016). Plant hydraulics as a central hub integrating plant and ecosystem function: Meeting report for ‘Emerging Frontiers in Plant Hydraulics’ (Washington, DC, May 2015). Plant, Cell & Environment, 39(9), 2085–2094. https://doi.org/10.1111/pce.12732
  24. Scoffoni, C., Chatelet, D. S., Pasquet-kok, J., Rawls, M., Donoghue, M. J., Edwards, E. J., & Sack, L. (2016). Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2(6), 1–8. https://doi.org/10.1038/nplants.2016.72
  25. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
  26. Silva, E. A., DaMatta, F. M., Ducatti, C., Regazzi, A. J., & Barros, R. S. (2004). Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Research, 89(2), 349–357. https://doi.org/10.1016/j.fcr.2004.02.010
  27. Tatagiba, S. D., Pezzopane, J. E. M., Reis, E. F. (2010). Crescimento vegetativo de mudas de café arábica (Coffea arabica L.) submetidas a diferentes níveis de sombreamento. Coffee Science, 5(3), 251–261. http://www.sbicafe.ufv.br:80/handle/123456789/5413
  28. Wang, X., Zhao, J., Huang, J., Peng, S., & Xiong, D. (2022). Evaporative flux method of leaf hydraulic conductance estimation: Sources of uncertainty and reporting format recommendation. Plant Methods, 18(1), 63. https://doi.org/10.1186/s13007-022-00888-w
  29. Wu, T., Tissue, D. T., Li, X., Liu, S., Chu, G., Zhou, G., Li, Y., Zheng, M., Meng, Z., & Liu, J. (2020). Long?term effects of 7?year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species. Global Change Biology, 26(12), 7144–7157. https://doi.org/10.1111/gcb.15355
  30. Xiong, D., & Nadal, M. (2020). Linking water relations and hydraulics with photosynthesis. The Plant Journal, 101(4), 800–815. https://doi.org/10.1111/tpj.14595
  31. Zapata, P. C., Andrade, H. J., & Nieto Abril, Z. K. (2017). Comportamiento ecofisiológico del cafeto (Coffea arabica L.) cv. Castillo en sistemas agroforestales de Tibacuy, Cundinamarca. Revista U.D.C.A Actualidad & Divulgación Científica, 20(1), 61–70. https://doi.org/10.31910/rudca.v20.n1.2017.63

Artigos mais lidos pelo mesmo(s) autor(es)