Brodribb, T. J., Holbrook, N. M., Zwieniecki, M. A., & Palma, B. (2005). Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima. New Phytologist, 165(3), 839–846. https://doi.org/10.1111/j.1469-8137.2004.01259.x
Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology, 144(4), 1890–1898. https://doi.org/10.1104/pp.107.101352
Brodribb, T. J., & Buckley, T. N. (2018). Leaf Water Transport: A Core System in the Evolution and Physiology of Photosynthesis. En W. W. Adams III & I. Terashima (Eds.), The Leaf: A Platform for Performing Photosynthesis (pp. 81–96). Springer International Publishing. https://doi.org/10.1007/978-3-319-93594-2_4
Ceulemans, R., & Saugier, B. (1991). Photosynthesis. En A. S. Raghavendra (Ed.), Physiology of trees (pp. 21–50). Wiley.
Meyer, F. G., Fernie, L. M., Narasimhaswamy, R. L., Monaco, L. C., & Greathead, D. J. (1968). FAO Coffee Mission to Ethiopia 1964-1965. FAO.
Franck, N., Vaast, P., Genard, M., & Dauzat, J. (2006). Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology, 26(4), 517–525. https://doi.org/10.1093/treephys/26.4.517
Gascó, A., Nardini, A., & Salleo, S. (2004). Resistance to water flow through leaves of Coffea arabica is dominated by extra-vascular tissues. Functional Plant Biology, 31(12), 1161. https://doi.org/10.1071/FP04032
Kumar, D., & Tieszen, L. L. (1980). Photosynthesis in Coffea arabica. I. Effects of Light and Temperature. Experimental Agriculture, 16(1), 13–19. https://doi.org/10.1017/S0014479700010656
Lovisolo, C., & Tramontini, S. (2010). Methods for Assessment of Hydraulic Conductance and Embolism Extent in Grapevine Organs. En S. Delrot, H. Medrano, E. Or, L. Bavaresco, & S. Grando (Eds.), Methodologies and Results in Grapevine Research (pp. 71–85). Springer Netherlands. https://doi.org/10.1007/978-90-481-9283-0_6
Machado, J. A., Rodrigues, W. P., Baroni, D. F., Pireda, S., Campbell, G., de Souza, G. A. R., Verdin Filho, A. C., Arantes, S. D., de Oliveira Arantes, L., da Cunha, M., Gambetta, G. A., Rakocevic, M., Ramalho, J. C., & Campostrini, E. (2021). Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. Journal of Plant Physiology, 258–259, 153355. https://doi.org/10.1016/j.jplph.2020.153355
Martins, S. C. V., Sanglard, M. L., Morais, L. E., Menezes-Silva, P. E., Mauri, R., Avila, R. T., Vital, C. E., Cardoso, A. A., & DaMatta, F. M. (2019). How do coffee trees deal with severe natural droughts? An analysis of hydraulic, diffusive and biochemical components at the leaf level. Trees, 33(6), 1679–1693. https://doi.org/10.1007/s00468-019-01889-4
Mauri, R., Cardoso, A. A., da Silva, M. M., Oliveira, L. A., Avila, R. T., Martins, S. C. V., & DaMatta, F. M. (2020). Leaf hydraulic properties are decoupled from leaf area across coffee species. Trees, 34(6), 1507–1514. https://doi.org/10.1007/s00468-020-01983-y
Nardini, A., Õunapuu-Pikas, E., Savi, T., Nardini, A., Õunapuu-Pikas, E., & Savi, T. (2014). When smaller is better: Leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four Coffea arabica genotypes. Functional Plant Biology, 41(9), 972–982. https://doi.org/10.1071/FP13302
R Software Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing (3.6.1.) [Computer software]. https://www.r-project.org
Sack, L., & Scoffoni, C. (2012). Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM). Journal of Visualized Experiments, 70, 4179. https://doi.org/10.3791/4179
Sack, L., Ball, M. C., Brodersen, C., Davis, S. D., Des Marais, D. L., Donovan, L. A., Givnish, T. J., Hacke, U. G., Huxman, T., Jansen, S., Jacobsen, A. L., Johnson, D. M., Koch, G. W., Maurel, C., McCulloh, K. A., McDowell, N. G., McElrone, A., Meinzer, F. C., Melcher, P. J., … Holbrook, N. M. (2016). Plant hydraulics as a central hub integrating plant and ecosystem function: Meeting report for ‘Emerging Frontiers in Plant Hydraulics’ (Washington, DC, May 2015). Plant, Cell & Environment, 39(9), 2085–2094. https://doi.org/10.1111/pce.12732
Scoffoni, C., Chatelet, D. S., Pasquet-kok, J., Rawls, M., Donoghue, M. J., Edwards, E. J., & Sack, L. (2016). Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2(6), 1–8. https://doi.org/10.1038/nplants.2016.72
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
Silva, E. A., DaMatta, F. M., Ducatti, C., Regazzi, A. J., & Barros, R. S. (2004). Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Research, 89(2), 349–357. https://doi.org/10.1016/j.fcr.2004.02.010
Wang, X., Zhao, J., Huang, J., Peng, S., & Xiong, D. (2022). Evaporative flux method of leaf hydraulic conductance estimation: Sources of uncertainty and reporting format recommendation. Plant Methods, 18(1), 63. https://doi.org/10.1186/s13007-022-00888-w
Wu, T., Tissue, D. T., Li, X., Liu, S., Chu, G., Zhou, G., Li, Y., Zheng, M., Meng, Z., & Liu, J. (2020). Long?term effects of 7?year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species. Global Change Biology, 26(12), 7144–7157. https://doi.org/10.1111/gcb.15355
Xiong, D., & Nadal, M. (2020). Linking water relations and hydraulics with photosynthesis. The Plant Journal, 101(4), 800–815. https://doi.org/10.1111/tpj.14595
Zapata, P. C., Andrade, H. J., & Nieto Abril, Z. K. (2017). Comportamiento ecofisiológico del cafeto (Coffea arabica L.) cv. Castillo en sistemas agroforestales de Tibacuy, Cundinamarca. Revista U.D.C.A Actualidad & Divulgación CientÃfica, 20(1), 61–70. https://doi.org/10.31910/rudca.v20.n1.2017.63