Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto del almacenamiento en la viabilidad, germinación y vigor de semillas de Coffea arabica L. Effect of storage on the viability, germination and vigor of seeds of Coffea arabica l.

Cómo citar
Flechas-Bejarano, N., & Medina-Rivera, R. (2021). Efecto del almacenamiento en la viabilidad, germinación y vigor de semillas de Coffea arabica L. Revista Cenicafé, 72(2), e72206. https://doi.org/10.38141/10778/72206

Dimensions
PlumX

Palabras clave
Tetrazolio

incubación

humedad relativa

temperatura

plántulas

almacenamiento

semilla

café

Tetrazolium

incubation

relative humidity

temperature

seedlings

storage

seed

coffee

Tetrazólio

Tetrazólio

incubação

umidade relativa do ar

temperatura

armazenamento

semente

café

Sección
Artículos
Términos de licencia (Ver)
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Resumen

El almacenamiento de semillas de café bajo condiciones idóneas de temperatura y humedad relativa mantiene por largos períodos de tiempo la calidad fisiológica para su propagación. El objetivo de esta investigación fue evaluar el efecto en la viabilidad de la semilla, de tres ambientes con temperatura y humedad relativa contrastantes, durante 14 meses de almacenamiento, mediante: la prueba topográfica con tetracloruro de tetrazolio; la germinación por la emergencia de la radícula en cajas plásticas y por conteo de plántulas en germinador de arena; y el vigor por mediciones morfométricas en plántulas de Coffea arabica L. var Castillo®. Para la viabilidad de la semilla, las categorías de tinción absoluta (A) y sin tinción (E) fueron diferentes, independientemente de los ambientes y del efecto de almacenamiento. La emergencia de la radícula y la germinación señalaron que la condición ambiental  10±2°C; 65±7% HR favorece una mayor proliferación de semillas con radículas emergentes y plántulas (>75%) en  los 400 y 320 días, respectivamente. En cuanto a la medición de las variables morfométricas, sólo la longitud del hipocótilo y de la raíz pivotante mostraron una tendencia descriptiva por tratamiento y mes de almacenamiento. La condición ambiental 10±2°C; 65±7% HR conservó la calidad fisiológica de las semillas para propagación durante cuatro meses.

Natalia Flechas-Bejarano, Cenicafé

Asistente de Investigación. Disciplina de Fisiología Vegetal, Centro Nacional de Investigaciones de Café, Cenicafé.


Rubén Medina-Rivera, Cenicafé

Investigador Científico II. Disciplina de Biometría, Centro Nacional de Investigaciones de Café, Cenicafé.


Referencias (Ver)

  1. Beedi, S., Macha, S. I., Gowda, B., Savitha, A. S., & Kurnallikar, V. (2018). Effect of seed priming on germination percentage, shoot length, root length, seedling vigour index, moisture content and electrical conductivity in storage of kabuli chickpea cv., MNK–1 (Cicer arietinum L.). Journal of Pharmacognosy and Phytochemistry, 7(1), 2005-2010.
  2. Busso, C., Torres, Y., Ithurrart, L., & Richards, J. H. (2015). The TTC-technique might not appropriately test the physiological stage of plant tissues. Russian Journal of Plant Physiology, 62(4), 551–556. https://doi.org/10.1134/S1021443715040068
  3. Castro, A. M., Rivillas, C. A., Serna-Giraldo, C., & Mejía, C. G. (2008). Germinadores de café: construcción, manejo de Rhizoctonia solani y costos. Avances Técnicos Cenicafé, 368, 1–12. http://hdl.handle.net/10778/4176
  4. Cheyed, S. H. (2019). Field emergence and seedling vigour of bread wheat as influenced by method and longevity of storage. Iraqi Journal of Agricultural Sciences, 50(6). 1495–1500 https://doi.org/10.36103/ijas.v50i6.837
  5. da Rosa, S. D. V. F., Carvalho, A. M., McDonald, M. B., von Pinho, E. R. V., Silva, A., P., & Veiga, A. D. (2011). The effect of storage conditions on coffee seed and seedling quality. Seed Science and Technology, 39(1), 151–164. https://doi.org/10.15258/sst.2011.39.1.13
  6. Dussert, S., Serret, J., Bastos-Siqueira, A., Morcillo, F., Déchamp, E., Rofidal, V., Lashermes, P., Etienne, H., & JOët, T. (2018). Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds. Journal of Experimental Botany, 69(7), 1583–1597. https://doi.org/10.1093/jxb/erx492
  7. Dussert, S., Davey, M. W., Laffargue, A., Doulbeau, S., Swennen, R., & Etienne, H. (2006). Oxidative stress, phospholipid loss and lipid hydrolysis during drying and storage of intermediate seeds. Physiologia Plantarum, 127(2), 192–204. https://doi.org/10.1111/j.1399-3054.2006.00666.x
  8. Eira, M. T. S., da Silva, E. A, de Castro, R. D., Dussert, S., Walters, C., Bewley, D., & Hilhorst, H. W. M. (2006). Coffee seed physiology. Brazilian Journal of Plant Physiology, 18(1), 149–163. https://doi.org/10.1590/S1677-04202006000100011
  9. Ellis, R. H., Hong, T. D., & Roberts, E. H. (1990). An Intermediate Category of Seed Storage Behaviour?. Journal of Experimental Botany, 41(9), 1167–1174. https://doi.org/10.1093/jxb/41.9.1167
  10. Fantazzini, T. B., Franco da Rosa, S. D. V., Carvalho, G. R., Liska, G. R., de Carvalho, M. L. M., Coelho, S. V. B., Cirillo, M. Â., & Ribeiro, F. A. S. (2020). Correlation between historical data of the germination test and of the tetrazolium test in coffee seeds by GAMLSS. Seed Science and Technology, 48(2), 179–188. https://doi.org/10.15258/sst.2020.48.2.05
  11. Farias, E. T., da Silva, E. A. A., Toorop, P. E., Bewley, J. D., & Hilhorst, H. W. M. (2015). Expression studies in the embryo and in the micropylar endosperm of germinating coffee (Coffea arabica cv. Rubi) seeds. Plant Growth Regulation, 75(2), 575–581. https://doi.org/10.1007/s10725-014-9960-6
  12. Ferreira, V. F., Ricaldoni, M. A., Rosa, S. D. V. F. da, Figueiredo, M. A. de, Coelho, S. V. B., & Fantazzini, T. B. (2018). Endo-?-mannanase enzyme activity in the structures of Coffea arabica L. seeds under different types of processing and drying. Ciência Rural, 48(12). e20170839. https://doi.org/10.1590/0103-8478cr20170839
  13. Freitas, M. N., Rosa, S D., Clemente, A. C. S., & Pereira, C. C. (2017). Relevance of endo-ß-mannanase enzyme in coffee seed deterioration process. African Journal of Agricultural Research, 12(15), 1253–1258. https://doi.org/10.5897/AJAR2016.10949
  14. Guimarães, C. C., Franco da Rosa, S. D. V., de Carvalho, M. H., Malta, M. R., & Evangelista Oliveira, R. M. (2020). Total lipid and fatty acid profiles of Coffea arabica endosperm and embryo tissues and their relationship to seed desiccation sensitivity. Seed Science and Technology, 48(2), 209–219. https://doi.org/10.15258/sst.2020.48.2.08
  15. Huang, Y., Lan, Q. Y., Hua, Y., Luo, Y. L., & Wang, X. F. (2014). Desiccation and storage studies on three cultivars of Arabica coffee. Seed Science and Technology, 42(1), 60–67. https://doi.org/10.15258/sst.2014.42.1.06
  16. International Seed Testing Association. (2005). International rules for seed testing 2005. ISTA.
  17. Joët, T., Laffargue, A., Salmona, J., Doulbeau, S., Descroix, F., Bertrand, B., de Kochko, A., & Dussert, S. (2009). Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study. The New Phytologist, 182(1), 146–162. https://doi.org/10.1111/j.1469-8137.2008.02742.x
  18. Mahender, A., Anandan, A., & Pradhan, S. K. (2015). Early seedling vigour, an imperative trait for direct-seeded rice: An overview on physio-morphological parameters and molecular markers. Planta, 241(5), 1027–1050. https://doi.org/10.1007/s00425-015-2273-9
  19. Marques, A., Buijs, G., Ligterink, W., & Hilhorst, H. (2018). Evolutionary ecophysiology of seed desiccation sensitivity. Functional Plant Biology, 45(11), 1083–1095. https://doi.org/10.1071/FP18022
  20. Nasiro, K. (2017). The Interaction Effects of Storage Condition, Storage Time and Initial Seed Moisture Content on Seedling Growth Performances of Coffee (Coffea arabica L.). Food Science and Quality Management, 70(1), 1–8. https://www.iiste.org/Journals/index.php/FSQM/article/view/40238
  21. Nasiro, K., Shimber, T., & Mohammed, A. (2017). Germination and seedling growth rate of coffee (Coffea arabica L.) seeds as influenced by initial seed moisture content, storage time and storage condition. International Journal of Agriculture and Biosciences, 6(6), 304–310. https://www.cabdirect.org/cabdirect/abstract/20183083796
  22. Rasband, W. (2018). ImageJ [Java plugins]. National Institute of Mental Health. https://imagej.nih.gov/ij/docs/intro.html
  23. RStudio Team (2020). RStudio: Integrated Development for R.Studio. http://www.rstudio.com/
  24. Selmar, D., Bytof, G., & Knopp, S. E. (2008). The Storage of Green Coffee (Coffea arabica): Decrease of Viability and Changes of Potential Aroma Precursors. Annals of Botany, 101(1), 31–38. https://doi.org/10.1093/aob/mcm277
  25. Shimizu, M. M., & Mazzafera, P. (2000). A Role for Trigonelline During Imbibition and Germination of Coffee Seeds. Plant Biology, 2(6), 605–611. https://doi.org/10.1055/s-2000-16645
  26. Shu, K., Liu, X., Xie, Q., & He, Z. (2016). Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 9(1), 34–45. https://doi.org/10.1016/j.molp.2015.08.010
  27. Steinbrecher, T., & Leubner-Metzger, G. (2017). The biomechanics of seed germination. Journal of Experimental Botany, 68(4), 765–783. https://doi.org/10.1093/jxb/erw428
  28. Trujillo, H. A., Gomes-Junior, F. G., & Cicero, S. M. (2019). Digital images of seedling for evaluating coffee seed vigor. Journal of Seed Science, 41(1), 60–68. https://doi.org/10.1590/2317-1545v41n1204651
  29. Walters, C. (2015). Orthodoxy, recalcitrance and in-between: Describing variation in seed storage characteristics using threshold responses to water loss. Planta, 242(2), 397–406. https://doi.org/10.1007/s00425-015-2312-6
  30. Wojtyla, ?., Lechowska, K., Kubala, S., & Garnczarska, M. (2016). Different Modes of Hydrogen Peroxide Action During Seed Germination. Frontiers in Plant Science, 7(1), 66. https://doi.org/10.3389/fpls.2016.00066

Artículos más leídos del mismo autor/a