Ir para o menu de navegação principal Ir para o conteúdo principal Ir para o rodapé

Capacidade de armazenamento de água em solos cultivados com café e outras propriedades edáficas relacionadas.

Como Citar
Lince-Salazar, L. A. (2021). Capacidade de armazenamento de água em solos cultivados com café e outras propriedades edáficas relacionadas. Cenicafé Journal, 72(1), e72101. https://doi.org/10.38141/10778/72101

Dimensions
PlumX

Palavras chave
Capacidad de campo

densidad aparente

densidad real

materia orgánica

punto de marchitez permanente

textura

Bulk density

field capacity

Organic matter

permanent wilting point

real density

texture

Capacidade de campo

densidade aparente

densidade real

matéria orgânica

ponto de murcha permanente

textura

##articleSummary.lastnum##
seção
Artigos
Termos de licença (See)
Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Luz Adriana Lince-Salazar

Resumo

Capacidade de armazenamento de água - AAC é uma propriedade determinante da produção agrícola. O Cenicafé desenvolveu uma investigação cujo objetivo foi estudar AAC em lotes de café e as propriedades do solo com as quais se relaciona (textura, matéria orgânica - MO, densidade aparente - Da, densidade real - Dr, retenção de umidade e porosidade total - Pt) ., através do perfil do solo e entre unidades cartográficas. Foram utilizados solos cultivados em café das unidades Catarina, Chinchiná, Dos Hundred, Guamal e Quindío em quatro profundidades (entre 0 e 5, 5 e 10, 10 e 20, 20 e 30 cm). As propriedades que apresentaram diferença de médias na profundidade do perfil foram CAA e retenção de umidade na capacidade de campo - CC na unidade Chinchiná, retenção de umidade no ponto de murcha permanente - PMP nas unidades Quindío e Catarina, lodos na unidade Dois cem, Pt na unidade Catarina, Da na unidade Quindío, Dr na unidade Catarina e MO em todas as unidades. Determinou-se que entre as unidades há diferença nas propriedades analisadas, exceto para Dr. Os modelos de regressão que explicaram as variáveis ??eram em sua maioria exponenciais simples, lineares para MO, e para as unidades estudadas, textura e Da explicam CC e PMP, que determinam o CAA. Além disso, verificou-se que as unidades com maior Pt nem sempre apresentam maior AAC, apesar de a Pt estar diretamente relacionada ao CC e ao PMP.

Luz Adriana Lince-Salazar, Centro Nacional de Investigaciones de Café

Investigador Científico I. Disciplina de Suelos, Centro Nacional de Investigaciones de Café, Cenicafé.
https://orcid.org/0000-0003-4263-5357


Referências (See)

  1. Al Majou, H., Bruand, A., & Duval, O. (2008). The use of in situ volumetric water content at field capacity to improve the prediction of soil water retention properties. Canadian Journal of Soil Science, 88(4), 533–541. https://doi.org/10.4141/CJSS07065
  2. Arcila, J., Farfán, F., Moreno, A. M., Salazar, L. F., & Hincapié, E. (2007). Sistemas de producción de café en Colombia. Cenicafé. http://hdl.handle.net/10778/720
  3. Bortolini, D., & Albuquerque, J. A. (2018). Estimation of the Retention and Availability of Water in Soils of the State of Santa Catarina. Revista Brasileira de Ciência do Solo, 42, e170250 https://doi.org/10.1590/18069657rbcs20170250
  4. Cardona, D. A., & Sadeghian, S. (2005). Evaluación de propiedades físicas y químicas de suelos establecidos con café bajo sombra y a plena exposición solar. Revista Cenicafé, 56(4), 348–364. http://hdl.handle.net/10778/197
  5. Costa, A., Albuquerque, J. A., Costa, A., Pértile, P., & Silva, F. (2013). Water retention and availability in soils of the State of Santa Catarina-Brazil: Effect of textural classes, soil classes and lithology. Revista Brasileira de Ciência do Solo, 37(6), 1535–1548. https://doi.org/10.1590/S0100-06832013000600010
  6. Dobarco, M. R., Bourennane, H., Arrouays, D., Saby, N. P., Cousin, I., & Martin, M. P. (2019). Uncertainty assessment of GlobalSoilMap soil available water capacity products: A French case study. Geoderma, 344, 14–30. https://doi.org/10.1016/j.geoderma.2019.02.036
  7. Dobarco, M. R., Cousin, I., Le Bas, C., & Martin, M. P. (2019). Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma, 336, 81–95.
  8. https://doi.org/10.1016/j.geoderma.2018.08.022
  9. Farfán, F., & Hincapié, E. (2011). Valoración de la sostenibilidad ambiental mediante indicadores de calidad del suelo, en sistemas de producción de café en Colombia. Revista Cenicafé, 62(1), 100–118. http://hdl.handle.net/10778/476
  10. Federación Nacional de Cafeteros de Colombia. (1986). Estudio de zonificación y uso potencial del suelo en la zona cafetera del departamento de Quindío.
  11. Folberth, C., Skalský, R., Moltchanova, E., Balkovi?, J., Azevedo, L. B., Obersteiner, M., & van der Velde, M. (2016). Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nature Communications, 7(1), 11872. https://doi.org/10.1038/ncomms11872
  12. González, H., Zapata, R., & Sadeghian, S. (2009) Caracterización de los ácidos húmicos en suelos de la zona cafetera de Caldas. Revista Cenicafé, 60(1), 25–40. http://hdl.handle.net/10778/156
  13. Haghverdi, A., Öztürk, H. S., & Cornelis, W. M. (2014). Revisiting the pseudo continuous pedotransfer function concept: Impact of data quality and data mining method. Geoderma, 226–227, 31–38. https://doi.org/10.1016/j.geoderma.2014.02.026
  14. Hincapié, E. (2011). Estudio y modelación del movimiento del agua en suelos volcánicos de ladera [Tesis de Doctorado, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/9296
  15. Hincapié, E., & Salazar, L. F. (2011). Impacto de la erosión sobre las propiedades físicas y químicas del suelo y la producción de café. Revista Cenicafé, 62(2), 79–89. http://hdl.handle.net/10778/490
  16. Huang, P. M., Li, Y., & Sumner, M. E. (Eds.). (2011). Handbook of Soil Sciences, Properties and processes (2. ed. [compl. rev. and rewritten]). CRC Press. https://doi.org/10.1201/b11267
  17. Instituto Geográfico Agustín Codazzi. (1990). Métodos analíticos del laboratorio de suelos (5ta ed.). IGAC.
  18. Keller, T., Arvidsson, J., & Dexter, A. R. (2007). Soil structures produced by tillage as affected by soil water content and the physical quality of soil. Soil and Tillage Research, 92(1), 45–52. https://doi.org/10.1016/j.still.2006.01.001
  19. Kilmer, V. J., & Alexander, L. T. (1949). Methods of making mechanical analyses of soils. Soil Science, 68(1), 15–24.
  20. https://journals.lww.com/soilsci/Citation/1949/07000/METHODS_OF_MAKING_MECHANICAL_ANALYSES_OF_SOILS.3.aspx
  21. Kirkham, M. B. (2005). Field Capacity, Wilting Point, Available Water, and the Non-Limiting Water Range. En Principles of Soil and Plant Water Relations (pp. 101–115). Elsevier. https://doi.org/10.1016/B978-012409751-3/50008-6
  22. Lal, R., & Shukla, M. K. (2004). Principles of soil physics. CRC Press.
  23. Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Plant Physiological Ecology (2nd ed.). Springer New York. https://doi.org/10.1007/978-0-387-78341-3
  24. Lince, L. A., & Sadeghian, S. (2016). Producción de café (Coffea arabica L.) en función de las propiedades del suelo, en dos localidades de Quindío, Colombia. Revista de Investigación Agraria y Ambiental, 7(1), 71–82. https://doi.org/10.22490/21456453.1547
  25. Lipiec, J., Walczak, R., Witkowska-Walczak, B., Nosalewicz, A., S?owi?ska-Jurkiewicz, A., & S?awi?ski, C. (2007). The effect of aggregate size on water retention and pore structure of two silt loam soils of different genesis. Soil and Tillage Research, 97(2), 239–246. https://doi.org/10.1016/j.still.2007.10.001
  26. Medina, S. B., & Salazar, L. F. (2009). Relación entre la resistencia al corte directo y propiedades físicas y químicas en algunos suelos de la zona cafetera colombiana. Revista Cenicafé, 60(3), 253–268. http://hdl.handle.net/10778/155
  27. Nobel, P. S. (2009). Chapter 9—Plants and Fluxes. En P. S. Nobel (Ed.), Physicochemical and Environmental Plant Physiology (4th ed., pp. 438–505). Academic Press. https://doi.org/10.1016/B978-0-12-374143-1.00009-0
  28. Or, D., Wraith, J. M., Robinson, D. A., & Jones, S. B. (2011). Soil water content and water potential relationships. En P. M. Huang, Y. Li & M. E. Sumner (Eds.), Handbook of soil sciences: Properties and processes (2nd ed. pp. 41–69). CRC Press.
  29. Padarian, J., Minasny, B., McBratney, A. B., & Dalgliesh, N. (2014). Predicting and mapping the soil available water capacity of Australian wheatbelt. Geoderma Regional, 2–3, 110–118. https://doi.org/10.1016/j.geodrs.2014.09.005
  30. Rawles, W. J., & Brakensiek, D. L. (1982). Estimating soil water retention from soil properties. Journal of the Irrigation and Drainage Division, 108(2), 166–171.
  31. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0034246
  32. Saxton, K. E., & Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70(5), 1569–1578. https://doi.org/10.2136/sssaj2005.0117
  33. Sadeghian, S. (2010). La materia orgánica: Componente esencial en la sostenibilidad de los agroecosistemas cafeteros. Cenicafé. http://hdl.handle.net/10778/1113
  34. Sadeghian, S., Salamanca, A., & Cardona, D. (2004, octubre 20–22). Indicadores de la calidad del suelo en algunos agroecosistemas de la zona cafetera colombiana. I Taller Nacional sobre Indicadores de Calidad del Suelo: Conceptos y Principios Aplicados a la Evaluación de la Degradación de las Tierras CIAT. Palmira, Colombia.
  35. Salamanca, A., & Sadeghian, S. (2005). La densidad aparente y su relación con otras propiedades en suelos de la zona cafetera colombiana. Revista Cenicafé, 56(4), 381–397. http://hdl.handle.net/10778/163
  36. Shao, X., Wang, Y., Bi, L., Yuan, Y., Su, X., & Mo, J. (2009). Study on soil water characteristics of tobacco fields based on canonical correlation analysis. Water Science and Engineering, 2(2), 79–86. https://doi.org/10.3882/j.issn.1674-2370.2009.02.009
  37. Suárez, S., Caballero, R., Chavarriaga, G., & Quevedo, P. (1986). Caracterización física, uso, manejo y conservación de algunos suelos de origen ígneo, metamórfico y sedimentario de la zona cafetera del departamento del Huila. Revista Cenicafé, 37(2), 41–60. https://www.cenicafe.org/es/publications/arc037%2802%29041-060.pdf
  38. Suárez, S. (1980). Caracterización física de algunos suelos de origen ígneo, metamórfico y sedimentario del Tolima. Revista Cenicafé, 31(3), 105–124. https://www.cenicafe.org/es/publications/arc031%2803%29105-124.pdf
  39. Suárez, S. (2000, julio 24–28). Características físicas de los suelos de la zona cafetera colombiana relacionadas con el uso, manejo y conservación. En Centro Nacional de Investigaciones de Café (Organizador), Simposio sobre suelos de la zona cafetera colombiana. Manizales, Caldas, Colombia.
  40. Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G., & Tóth, G. (2015). New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science, 66(1), 226–238. https://doi.org/10.1111/ejss.12192
  41. Valencia, G. (1999). Fisiología, nutrición y fertilización del cafeto. Cenicafé.
  42. Veihmeyer, F. J., & Hendrickson, A. H. (1927). The relation of soil moisture to cultivation and plant growth. Soil Science, 3, 498–513.
  43. Warrick, A. W., & Nielsen D. R. (1980). Spatial variability of soil physical properties in the field. En D. Hillel (Ed.), Applications of soil physics (pp. 319-344). Academic Press.
  44. Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T. M., Miltner, A., & Schroth, G. (1997). Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma, 79(1–4), 117–161. https://doi.org/10.1016/S0016-7061(97)00040-2

Artigos mais lidos pelo mesmo(s) autor(es)