Gómez, C. R., Ortiz, A., & Osorio, V. (2022). Regional origin prediction of colombian coffee from the near-infrared spectroscopy technique – NIRS. Cenicafe Journal, 73(2), e73205. https://doi.org/10.38141/10778/73205
Colombia is the third largest coffee-producing country and the first source of mild-washed coffees in the world, remaining a key player in the international market. Although Colombian coffee has achieved its consolidation due to the quality attributes of the bean, it is necessary to develop tools that objectively support the identity of the various origins within the country, because environmental conditions change throughout the geographic zones, generating different cup characteristics as a result of the particularities of its production. This research evaluated the NIRS technique for the prediction of the origin of green coffee samples from eight producing departments in Colombia. To develop the calibration models, the discriminant statistical method used was RMS (Root Mean Square) X Residuality, using the standard Normal Variation Scatter (SVN) and Detrend correction with the mathematical treatment 2,4,4,1 (derivative, gap, and smooth), to decrease the spectral noise generated by the sample characteristics. The results showed a global average classification accuracy of 92%, highlighting the departments of Antioquia and Nariño, and the Sierra Nevada area, with 98%, 99%, and 97%, respectively. The model developed by production areas (North, Central, and South Zone) presented a global mean accuracy of 89%. The research results confirm that the NIRS technique allows the prediction of the regional origin of Colombian coffee.
Alonso-Salces, R. M., Serra, F., Reniero, F., & HÉberger, Ká. (2009). Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): Chemometric evaluation of phenolic and methylxanthine contents. Journal of Agricultural and Food Chemistry, 57(10), 4224–4235. https://doi.org/10.1021/jf8037117
Ariza-López, F. J., RodrÃguez-Avi, J., & Alba-Fernández, V. (2018). Control estricto de matrices de confusión por medio de distribuciones multinomiales. GeoFocus. International Review of Geographical Information Science and Technology, 21, 215–226. https://doi.org/10.21138/GF.591
Arndt, M., Drees, A., Ahlers, C., & Fischer, M. (2020). Determination of the geographical origin of walnuts (juglans regia l.) using near-infrared spectroscopy and chemometrics. Foods, 9(12), 1860. https://doi.org/10.3390/foods9121860
Bertrand, D., & Dufour, E. (Eds.). (2005). La spectroscopie infrarouge et ses applications analytiques (2a ed.). Tec et Doc - Lavoisier.
Bona, E., Marquetti, I., Link, J. V., Makimori, G. Y. F., da Costa Arca, V., Guimarães Lemes, A. L., Ferreira, J. M. G., dos Santos Scholz, M. B., Valderrama, P., & Poppi, R. J. (2017). Support vector machines in tandem with infrared spectroscopy for geographical classification of green arabica coffee. LWT - Food Science and Technology, 76, 330–336. https://doi.org/10.1016/j.lwt.2016.04.048
Chen, X., Wu, D., He, Y., & Liu, S. (2011). Nondestructive differentiation of panax species using visible and shortwave near-infrared spectroscopy. Food and Bioprocess Technology, 4(5), 753–761. https://doi.org/10.1007/s11947-009-0199-6
Cozzolino, D. (2002). Uso de la espectroscopÃa de reflectancia en el infrarrojo cercano (NIRS) en el análisis de alimentos para animales. Agrociencia, 6(2), 25–32. http://www.fagro.edu.uy/~agrociencia/VOL6/2/p25-32.pdf
Cozzolino, D., Fernández, E. G., Restaino, E. A., & La Manna, A. (2006). Determinación de la composición quÃmica de heno mediante la espectrofotometrÃa en el infrarrojo cercano (NIRS). Revista Argentina de producción animal, 26(1), 203–209. http://www.ainfo.inia.uy/digital/bitstream/item/12191/1/4261-22466-1-PB.pdf
Deming, S. N., Michotte, Y., Massart, D. L., Kaufman, L., & Vandeginste, B. G. M. (1988). Chemometrics: A textbook. Elsevier Science.
Giraudo, A., Grassi, S., Savorani, F., Gavoci, G., Casiraghi, E., & Geobaldo, F. (2019). Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis. Food Control, 99, 137–145. https://doi.org/10.1016/j.foodcont.2018.12.033
Mark, H. (2007). Data analysis: multilinear regression and principal component analysis. En D. A. Burns & E. W. Ciurczak (Eds.), Handbook of Near-Infrared Analysis (3a ed., pp. 151–188). CRC Press. https://doi.org/10.1201/9781420007374
Martens, H., & Næs, T. (1992). Multivariate Calibration. John Wiley & Sons.
Mongay Fernández, C. (2005). QuimiometrÃa. Universitat de València.
Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Practical NIR spectroscopy with applications in food and beverage analysis (2nd ed). Longman Scientific & Technical?; Wiley.
Otto, M. (2017). Chemometrics: Statistics and computer application in4 analytical chemistry (3a ed.). Wiley-VCH Verlag.
Prades, C., GarcÃa-Olmo, J., Romero Prieto, T., GarcÃa de Ceca, J. L., & López-Luque, R. (2013). Aplicación de la tecnologÃa de espectroscopia de infrarrojo cercano (NIRS) a la clasificación por calidad del corcho en plancha. VI Congreso Forestal Español, 2–13. http://secforestales.org/publicaciones/index.php/congresos_forestales/article/view/14270
Siregar, S. D., Rindang, A., & Ayu, P. C. (2020). Principle Component Analysis (PCA)—Classification of Arabica green bean coffee of North Sumatera Using FT–NIRS. IOP Conference Series: Earth and Environmental Science, 454(1), 012046. https://doi.org/10.1088/1755-1315/454/1/012046
Vásquez, D. R., AbadÃa, B., & Arreaza, L. C. (2004). Aplicación de la EspectroscopÃa de Reflectancia en el Infrarrojo Cercano (NIRS) para la caracterización nutricional del pasto Guinea y del grano de maÃz. Ciencia & TecnologÃa Agropecuaria, 5(1), 49–55. https://doi.org/10.21930/rcta.vol5_num1_art:24
Williams, P., & Norris, K. H. (1987). Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists. https://doi.org/10.1002/food.19880320825
Williams, P. C., & Sobering, D. C. (1996). How Do We Do It: A Brief Summary of the Methods We Use in Developing near Infrared Calibration. In A. M. C. Davis & P. Williams (Eds.), Near Infrared Spectroscopy: The Future Waves (pp. 185–188). NIR Publications.
Xu, L., Cai, C.-B., She, Y.-B., & Chen, L.-J. (2015). Discriminating the Geographical Origins of Chinese White Lotus Seeds by Near-Infrared Spectroscopy and Chemometrics. Journal of Spectroscopy, 2015, e831246. https://doi.org/10.1155/2015/831246
Yang, B., Yao, L., & Pan, T. (2017). Near-Infrared Spectroscopy Combined with Partial Least Squares Discriminant Analysis Applied to Identification of Liquor Brands. Engineering, 9(2), 181–189. https://doi.org/10.4236/eng.2017.92009