Skip to main navigation menu Skip to main content Skip to site footer

Effect of coffee moisture content on water activity Efecto del porcentaje de humedad del café en la actividad de agua

How to Cite
Osorio, V., Pabón, J., & Gómez, C. R. (2024). Effect of coffee moisture content on water activity. Cenicafe Journal, 75(1), e75104. https://doi.org/10.38141/10778/75104




Keywords
Café pergamino seco

café excelso

calidad sensorial

humedad relativa de equilibro

café

Dry parchment coffee

excelso coffee

sensory quality

equilibrium relative humidity

coffee

Cenicafé

Sectión
Articles
Valentina Osorio
Jenny Pabón
Claudia Rocío Gómez

Summary

In the coffee industry, the percentage moisture content is one of the most important physical indicators of quality, defining the shelf life and the behavior of the physical and sensory properties of coffee during storage. Water activity (aw) can be expressed as the potential availability of water to participate in different reactions (biochemical, microbiological, physicochemical); the higher the water content, the higher the aw. To determine the water activity value for dry parchment coffee and excelso coffee in samples that meet the required moisture percentage of 10% to 12%, samples from different Colombian origins and processes were obtained. For this purpose, 400 coffee samples were taken: 200 dry parchment coffee samples from Coffee Growers' Cooperatives purchase points and 200 green coffee bean samples of excelso quality from milling facilities. In each case, the moisture percentage was determined according to ISO 6673 standard and water activity at a temperature of 25°C. Dry parchment coffee and excelso coffee with moisture levels within the required range were found to have water activity values below 0.62, making the product less susceptible to most causes of deterioration.

Valentina Osorio, Centro Nacional de Investigaciones de Café

Investigador Científico I. Disciplina de Calidad, Centro Nacional de Investigaciones de Café, Cenicafé. 


Jenny Pabón, Centro Nacional de Investigaciones de Café

Asistentes de Investigación. Disciplina de Calidad, Centro Nacional de Investigaciones de Café, Cenicafé.


Claudia Rocío Gómez, Centro Nacional de Investigaciones de Café

Asistentes de Investigación. Disciplina de Calidad, Centro Nacional de Investigaciones de Café, Cenicafé


References (See)

  1. Akbar, A., & Magan, N. (2014). The impact of water and temperature interactions on lag phase, growth and potential ochratoxin A production by two new species, Aspergillus aculeatinus and A. sclerotiicarbonarius, on a green coffee-based medium. International Journal of Food Microbiology, 188, 116–121. https://doi.org/10.1016/j.ijfoodmicro.2014.07.025
  2. Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2002). Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food and Bioproducts Processing, 80(2), 118–128. https://doi.org/10.1205/09603080252938753
  3. Badui Dergal, S. (2016). Química de los alimentos (4a ed.). Pearson Educación. https://repositorio.uteq.edu.ec/handle/43000/3608
  4. Barbosa, G. V., Fontana, A. J., Schmidt, S. J., & Labuza, T. P. (Eds.). (2008). Water Activity in Foods: Fundamentals and Applications. Blackwell Publishing Ltd. https://doi.org/10.1002/9780470376454
  5. Bohorquez, C., García, O., Sánchez, T., & Pinzón, M. (2016). Isotermas de sorción de almendras de café de cuatro origenes almacenadas en dos tipos de empaque. Revista Alimentos Hoy, 24(39), 85–91.
  6. Damodaran, S., & Parkin, K. L. (Eds.). (2017). Fennema’s Food Chemistry (5a ed.). CRC Press. https://doi.org/10.1201/9781315372914
  7. Echeverri, L. F., Ortiz, A., Gallego, C. P., & Imbachí, L. C. (2020). Caracterización de la fracción lipídica del café verde en variedades mejoradas de Coffea arabica L. Revista Cenicafé, 71(2), 39–52. https://doi.org/10.38141/10778/71203
  8. Esteban, A., Abarca, M. L., Bragulat, M. R., & Cabañes, F. J. (2006). Effect of water activity on ochratoxin A production by Aspergillus niger aggregate species. International Journal of Food Microbiology, 108(2), 188–195. https://doi.org/10.1016/j.ijfoodmicro.2005.12.002
  9. Estrada-Bahena, E. B., Salazar, R., Ramírez, M., Moreno-Godínez, Ma. E., Jiménez-Hernández, J., Romero-Ramírez, Y., González-Cortázar, M., & Alvarez-Fitz, P. (2022). Influence of water activity on physical properties, fungal growth, and ochratoxin A production in dry cherries and green-coffee beans. Journal of Food Processing and Preservation, 46(2), e16226. https://doi.org/10.1111/jfpp.16226
  10. Fontana, A. J., & Carter, B. P. (2020). Measurement of Water Activity, Moisture Sorption Isotherm, and Moisture Content of Foods. En G. V. Barbosa, A. J. Fontana, S. J. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods (pp. 207–226). Wiley. https://doi.org/10.1002/9781118765982.ch8
  11. Gallego, C. P., & Rodríguez-Valencia, N. (2021). Identificación de algunas variables fisicoquímicas y microbiológicas asociadas con el defecto reposo en el café. Revista Cenicafé, 72(1), e72105. https://doi.org/10.38141/10778/72105
  12. García, D., Ramos, A. J., Sanchis, V., & Marín, S. (2011). Modelling the effect of temperature and water activity in the growth boundaries of Aspergillus ochraceus and Aspergillus parasiticus. Food Microbiology, 28(3), 406–417. https://doi.org/10.1016/j.fm.2010.10.004
  13. Gómez, C. R., Gallego, C. P., Echeverri, L. F., Pabón, J., Ortiz, A., & Osorio, V. (2023). Determinación de compuestos químicos del café tostado por Espectroscopia de Infrarrojo Cercano (NIRS). Revista Cenicafé, 74(1), e74104. https://doi.org/10.38141/10778/74104
  14. Goneli, A. L. D., Corrêa, P. C., Oliveira, G. H. H., & Júnior, P. C. A. (2013). Water sorption properties of coffee fruits, pulped and green coffee. LWT - Food Science and Technology, 50(2), 386–391. https://doi.org/10.1016/j.lwt.2012.09.006
  15. Instituto Colombiano de Normas Técnicas y Certificación. (2021). NTC 2324:2021 Café verde. Examen olfativo y visual y determinación de materia extraña y defectos. https://tienda.icontec.org/gp-cafe-verde-examen-olfativo-y-visual-y-determinacion-de-materia-extrana-y-defectos-ntc2324-2021.html
  16. International Organization for Standardization. (1995). ISO 6669:1995. Green and roasted coffee—Determination of free-flow bulk density of whole beans (Routine method). https://www.iso.org/standard/13098.html
  17. International Organization for Standardization. (2003). ISO 6673:2003—Green coffee—Determination of loss in mass at 105 degrees C. https://www.iso.org/standard/38375.html
  18. Kumar, D., & Kalita, P. (2017). Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods, 6(1), 8. https://doi.org/10.3390/foods6010008
  19. Labuza, T. P. (1980). Effect of water activity on reaction kinetics of food deterioration. Food Technology, 34, 36–41.
  20. Labuza, T. P. (1975). Interpretation of Sorption Data in Relation to the State of Constituent Water. En R. B. Duckworth (Ed.), Water Relations of Foods (pp. 155–172). Elsevier. https://doi.org/10.1016/B978-0-12-223150-6.50014-6
  21. Mannaa, M., & Kim, K. D. (2017). Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage. Mycobiology, 45(4), 240–254. https://doi.org/10.5941/MYCO.2017.45.4.240
  22. Mendonça, J. C. F., Franca, A. S., & Oliveira, L. S. (2007). A comparative evaluation of methodologies for water content determination in green coffee. LWT - Food Science and Technology, 40(7), 1300–1303. https://doi.org/10.1016/j.lwt.2006.08.013
  23. Montilla, J., Arcila-Pulgarín, J., Aristizábal-Loaiza, M., Montoya-Restrepo, E. C., Puerta-Quintero, G. I., Oliveros-Tascón, C. E., & Cadena-Gómez, G. (2008). Caracterización de algunas propiedades físicas y factores de conversión del café durante el proceso de beneficio húmedo tradicional. Revista Cenicafé, 59(2), 120–142. https://www.cenicafe.org/es/publications/arc059(02)120-142.pdf
  24. Oliveira, G., Evangelista, S. R., Passamani, F. R. F., Santiago, W. D., Cardoso, M. D. G., & Batista, L. R. (2019). Influence of temperature and water activity on Ochratoxin A production by Aspergillus strain in coffee south of Minas Gerais/Brazil. LWT, 102, 1–7. https://doi.org/10.1016/j.lwt.2018.12.032
  25. Osorio, V. (2021). La calidad del Café. En Centro Nacional de Investigaciones de Café, Guía más agronomia, más productividad, más calidad (3a ed., pp. 219–234). Cenicafé. https://doi.org/10.38141/10791/0014_12
  26. Osorio, V., Matallana Pérez, L. G., Fernandez-Alduenda, M. R., Alvarez Barreto, C. I., Gallego Agudelo, C. P., & Montoya Restrepo, E. C. (2023). Chemical Composition and Sensory Quality of Coffee Fruits at Different Stages of Maturity. Agronomy, 13(2), 341. https://doi.org/10.3390/agronomy13020341
  27. Pabón, J., & Osorio, V. (2022). Efecto de la interrupción del secado mecánico en la calidad física y sensorial del café. Revista Cenicafé, 73(2), e73201. https://doi.org/10.38141/10778/73201
  28. Palacios-Cabrera, H. A., Menezes, H. C., Iamanaka, B. T., Canepa, F., Teixeira, A. A., Carvalhaes, N., Santi, D., Leme, P. T. Z., Yotsuyanagi, K., & Taniwaki, M. H. (2007). Effect of Temperature and Relative Humidity during Transportation on Green Coffee Bean Moisture Content and Ochratoxin A Production. Journal of Food Protection, 70(1), 164–171. https://doi.org/10.4315/0362-028X-70.1.164
  29. Pardo, E., Ramos, A., Sanchis, V., & Marin, S. (2005). Modelling of effects of water activity and temperature on germination and growth of ochratoxigenic isolates of on a green coffee-based medium. International Journal of Food Microbiology, 98(1), 1–9. https://doi.org/10.1016/j.ijfoodmicro.2004.05.003
  30. Puerta, G. I. (2006). La humedad controlada del grano preserva la calidad del café. Avances Técnicos Cenicafé, 352, 1–8. https://biblioteca.cenicafe.org/handle/10778/418
  31. Saltmarch, M., & Labuza, T. P. (1982). Nonenzymatic Browning via the Maillard Reaction in Foods. Diabetes, 31(Supplement_3), 29–36. https://doi.org/10.2337/diab.31.3.S29
  32. Sun, D.-W., & Woods, J. L. (1993). The Moisture Content/Relative Humidity Equilibrium Relationship Of Wheat—A Review. Drying Technology, 11(7), 1523–1551. https://doi.org/10.1080/07373939308916918
  33. Trejos, R., Roa, G., & Oliveros, C. E. (1989). Humedad de equilibrio y calor latente de vaporización del café pergamino y del café verde. Revista Cenicafé, 40(1), 5–15. http://hdl.handle.net/10778/841

Most read articles by the same author(s)

1 2 > >>